

HMP - Servoantriebssysteme

Einleitung

Die AC-Servomotoren der HeiMotion Premium Baureihe erfüllen höchste Ansprüche an Gleichlauf und Genauigkeit. Fünf Flanschgrößen mit unterschiedlichen Drehmomentabstufungen bieten für nahezu jede Anwendung die richtige Antriebslösung. Die komprimierte Wickeltechnologie mit bewährten Eigenschaften ermöglicht die Realisierung kompakter Baugrößen und verringert die Produktionskosten gegenüber anderen Motoren auf dem Markt.

Die HeiMotion Premium Motoren sind in fünf verschiedenen Flanschgrößen erhältlich:
□ 40 mm - HMP04
□ 60 mm - HMP06
□ 80 mm - HMP08
□ 100 mm - HMP10
□ 130 mm - HMP13

Die Eigenschaften im Überblick:

- Höchster Gleichlauf und Genauigkeit
- Vielfältig konfigurierbar und kundenspezifisch anpassbar
- Hoher Wirkungsgrad
- Optimierte Trägheitsmomente
- Langlebig
- Kompakte Bauform
- Hohe Leistungsdichte
- Hohe Überlastfähigkeit
- Niedriges Rastmoment
- Energieeffizient

Inhaltsverzeichnis

Allgemeines	
Übersicht Motoren Zuordnung Motoren und Servoregler Umgebungsbedingungen und technische Merkmale Abkürzungen und Definitionen Lebensdauer Bestellschlüssel	S. 4 S. 5 S. 6 S. 7 S. 8 S. 9
HeiMotion Premium Motoren	
HMP04 HMP06 HMP08 HMP10 HMP13	S. 10 S. 14 S. 16 S. 20 S. 22
Optionen	
Variantenübersicht Standard Resolver Inkrementalgeber Absolutwertgeber EnDat 2.2 Absolutwertgeber HIPERFACE® Absolutwertgeber HIPERFACE®-DSL Hall-Encoder Geber HS/M 16 Bremse Stecker Y-Tec Stecker M23 Stecker für Einkabellösung	S. 26 S. 28 S. 29 S. 30 S. 32 S. 34 S. 36 S. 38 S. 39 S. 40 S. 42 S. 44
Servoregler	
Servoregler Übersicht HCD Servoregler HCB Servoregler HCF Servoregler HCJ Servoregler	S. 47 S. 48 S. 50 S. 54 S. 56

Übersicht

HeiMotion Premium Motoren

T	Danalahawan	\mathbf{U}_{zK}	I _o	I _n	M _o	M _n	M _{max}	n _n	J	P _n (S1)
Тур	Bezeichnung	$[V_{DC}]$	[A]	[A]	[Nm]	[Nm]	[Nm]	[min-1]	[kgcm²]	[W]
		48	1,8	1,7	0,18	0,16	0,6	3.000	3,00E-02	50
HMP04	HMP04-002	48	3,4	3,0	0,18	0,14	0,7	6.000	3,00E-02	85
		320	0,8	0,7	0,18	0,12	0,7	9.000	3,00E-02	110
		48	3,5	3,3	0,35	0,32	1,3	3.000	5,40E-02	100
	HMP04-004	48	6,3	5,7	0,35	0,28	1,3	6.000	5,40E-02	175
		320	1,6	1,2	0,35	0,21	1,4	9.000	5,40E-02	200
	LIN 4D00, 007	320	0,9	0,8	0,7	0,6	2,8	3.000	2,20E-01	200
	HMP06-007	320	1,6	1,3	0,7	0,5	2,8	6.000	2,20E-01	325
HMP06	LIMPOO O4 F	320	1,8	1,5	1,5	1,2	6,0	3.000	4,13E-01	400
	HMP06-015	320	3,3	2,2	1,5	0,9	6,0	6.000	4,13E-01	550
		320	3,1	2,6	2,8	2,4	11,2	3.000	1,40E00	750
	HMP08-028	320	5,6	3,7	2,8	1,7	11,2	5.500	1,40E00	1.000
		560	1,8	1,6	2,8	2,3	11,2	3.000	1,40E00	750
LINADOO		560	3,3	2,2	2,8	1,7	11,2	5.500	1,40E00	1.000
HMP08	HMP08-035	320	3,9	3,7	3,5	3,2	14,0	3.000	1,93E00	1.000
		320	7,1	4,8	3,5	2,1	14,0	5.500	1,93E00	1.200
		560	2,2	2,1	3,5	3,2	14,0	3.000	1,93E00	1.000
		560	3,9	2,8	3,5	2,1	14,0	5.500	1,93E00	1.200
	HMP10-056	560	3,4	3,0	5,6	4,8	22,4	3.000	4,84E00	1.500
HMP10	HIVIF 10-030	560	5,4	3,7	5,6	3,4	22,4	5.000	4,84E00	1.800
HIVIPTO	HMP10-075	560	4,6	4,1	7,5	6,4	30,0	3.000	6,41E00	2.000
	HIVIF 10-075	560	7,5	5,3	7,5	4,8	30,0	5.000	6,41E00	2.500
		320	4,8	4,1	5,5	4,8	22,0	2.000	9,82E00	1.000
	HMP13-055	320	8,2	6,0	5,5	4,0	22,0	3.600	9,82E00	1.500
	HIVIP 13-U00	560	2,7	2,3	5,5	4,8	22,0	2.000	9,82E00	1.000
		560	4,7	3,4	5,5	4,0	22,0	3.600	9,82E00	1.500
LIMD10	LIMD10 001	560	4,4	3,4	9,1	7,2	36,4	2.000	1,40E01	1.500
HMP13	HMP13-091	560	7,7	5,0	9,1	6,0	36,4	3.600	1,40E01	2.250
	LIMD10 100	560	4,7	4,5	12,3	9,6	49,2	2.000	2,11E01	2.000
	HMP13-123	560	10,3	6,7	12,3	8,0	49,2	3.600	2,11E01	3.000
	LIMD10 10E	560	8,4	6,5	18,5	14,4	74,0	2.000	3,38E01	3.000
	HMP13-185	560	14,8	8,0	18,5	10,0	74,0	3.600	3,38E01	3.750

Zuordnung Motoren und Servoregler

Makes	Danalahawaa	n	U_{z_K}	I _o	HCD	НСВ	НСВ	HCF	HCJ	HCJ
MOTOL	Bezeichnung	[min-1]	$[V_{DC}]$		1 X 230 V _{AC}	1 X 230 V _{AC}	3 x 400 V _{AC}	24 - 48 V _{DC}	1 X 230 V _{AC}	3 x 400 V _{AC}
		3.000	48	1,8		HCB 2/6-1	HCB 4/12-3	HCF		
	HMP04-002	6.000	48	3,4		HCB 4/12-1	HCB 4/12-3	HCF		
HMP04		9.000	320	0,8	HCD	HCB 2/6-1	HCB 4/12-3		HCJ 22.003	
HIVIPU4		3.000	48	3,5		HCB 4/12-1	HCB 4/12-3	HCF		
	HMP04-004	6.000	48	6,3			HCB 8/24-3	HCF		
		9.000	320	1,6	HCD	HCB 2/6-1	HCB 4/12-3		HCJ 22.003	
	HMP06-007	3.000	320	0,9	HCD	HCB 2/6-1	HCB 4/12-3		HCJ 22.003	
LIMPOS	HIVIPUO-UU1	6.000	320	1,6	HCD	HCB 2/6-1	HCB 4/12-3		HCJ 22.003	
HMP06	HMP06-015	3.000	320	1,8	HCD	HCB 2/6-1	HCB 4/12-3		HCJ 22.003	
	1 1101-00-013	6.000	320	3,3	HCD	HCB 4/12-1	HCB 4/12-3		HCJ 22.006	
		3.000	320	3,1	HCD	HCB 4/12-1	HCB 4/12-3		HCJ 22.006	
	HMP08-028	5.500	320	5,6			HCB 8/24-3		HCJ 22.006	
		3.000	560	1,8			HCB 4/12-3			HCJ 24.002
НМР08		5.500	560	3,3			HCB 4/12-3			HCJ 24.004
	HMP08-035	3.000	320	3,9		HCB 4/12-1	HCB 4/12-3		HCJ 22.006	
		5.500	320	7,1			HCB 8/24-3		HCJ 22.008	
		3.000	560	2,2			HCB 4/12-3			HCJ 24.004
		5.500	560	3,9			HCB 4/12-3			HCJ 24.007
	HMP10-056	3.000	560	3,4			HCB 4/12-3			HCJ 24.004
HMP10	T IIVIF TO-030	5.000	560	5,4			HCB 8/24-3			HCJ 24.007
T IIVII TO	HMP10-075	3.000	560	4,6			HCB 8/24-3			HCJ 24.007
	T IIVIF TO-OT S	5.000	560	7,5			HCB 8/24-3			HCJ 24.012
		2.000	320	4,8			HCB 8/24-3		HCJ 22.006	
	HMP13-055	3.600	320	8,2			HCB 12/30-3		HCJ 22.008	
	1 IIVIF 13-000	2.000	560	2,7			HCB 4/12-3			HCJ 24.004
		3.600	560	4,7			HCB 8/24-3			HCJ 24.007
LIMD12	HMP13-091	2.000	560	4,4			HCB 8/24-3			HCJ 24.007
HMP13	1 IIVIF 13-091	3.600	560	7,7			HCB 8/24-3			HCJ 24.012
	HMP13-123	2.000	560	4,7			HCB 8/24-3			HCJ 24.007
	DIVID 13-123	3.600	560	10,3			HCB 12/30-3			HCJ 24.012
	HMP13-185	2.000	560	8,4			HCB 12/30-3			HCJ 24.012
	1 11VIF 13-100	3.600	560	14,8						HCJ 24.016

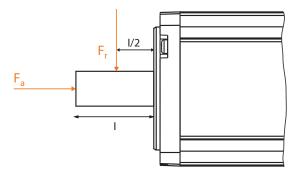
HCF Seite 54

HCJ Seite 56

Allgemeine Daten

Umgebungsbedingungen und technische Merkmale

Motortyp		Permanentmagneterregter Drehstrom-Synchron-Servomotor					
Umgebungstemperaturer	n (im Betrieb)	- 10 °C bis + 40 °C					
Lagertemperaturen (nicht	im Betrieb)	- 25 °C bis + 70 °C					
Luftfeuchte		< 90 % relative Luftfeuchte (ohne Auskondensation)					
Isolationsklasse		F (= bis 155 °C) $\Delta T = 115 K$					
Verschmutzungsgrad		2					
Schutzart		IP65 im Standard (außer AS-Seite, hier IP21; AS-Seite mit Radial-wellendichtring IP65)					
Kühlung		Konvektiv (Selbstkühlung)					
Überspannungskategorie		HMP04: II bis max. 3000 m über NN; I bis max. 4000 m über NN HMP06 bis 13: II bis max. 4000 m über NN					
Lagerlebensdauer		20.000 h bei Bemessungsbedingungen (M _n)					
Temperatursensor		KTY84-130					
Spannungssteilheit dU/dt		8 kV / µs					
Max. Aufstellhöhe		4.000 m über NN; Ab 1.000 m gilt ein Derating von 1% je 100 m					
Rundlaufgenauigkeit, Koa und Planlauf nach DIN 42		N (normal)					
Schwingstärke nach ISO	2373	Stufe N					
Rastmomentfaktor c _t	HMP04 HMP06 HMP08 HMP10 HMP13	< 2,8 % bezogen auf das Stillstandsmoment (M _o) < 2,5 % bezogen auf das Stillstandsmoment (M _o) < 2,0 % bezogen auf das Stillstandsmoment (M _o) < 1,7 % bezogen auf das Stillstandsmoment (M _o) < 1,5 % bezogen auf das Stillstandsmoment (M _o)					
Lackierung		Decklack schwarz, RAL 9005					
Magnetmaterial		Neodym Eisen Bor (NdFeB)					
Wellenende		Zylindrisches Wellenende mit / ohne Passfedernut					
Wuchtgüte		Q 2,5					
Gebersysteme		Resolver, HIPERFACE®, HIPERFACE DSL®, Inkrementalgeber, SSI/BiSS, EnDat 2.2					
Approbationen		CE, cSus - Abnahme (siehe E341694)					


Abkürzungen und Definitionen

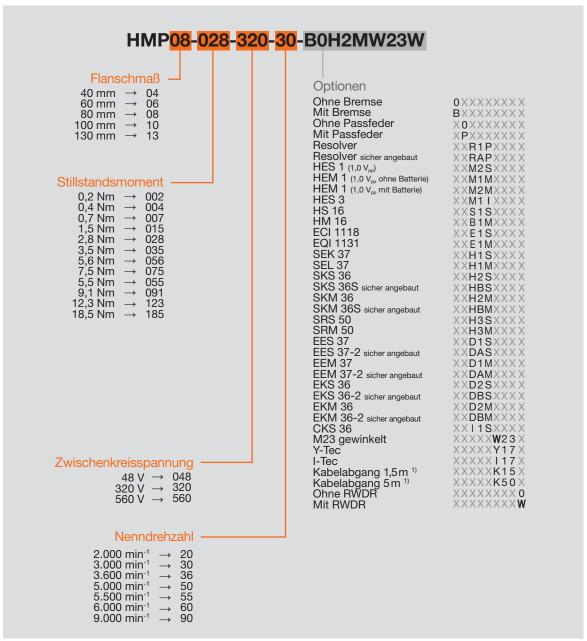
Kürzel	Einheit	Erläuterung					
f _n	[Hz]	Nennfrequenz					
I _O	$[A_{rms}]$	Stillstandsstrom je Phase (Motorstrom beim Stillstandsdrehmoment M_{o})					
l _n	$[A_{rms}]$	Nennstrom (Nennstrom je Phase)					
I _{max}	$[A_{rms}]$	Spitzenstrom (Maximal zulässiger Strom je Phase)					
J	[kgcm²]	Massenträgheitsmoment Rotor (Bezieht sich auf einen Motor ohne Bremse)					
k _e	[V _{ms} / kmin ⁻¹]	Spannungskonstante (Induzierte Spannung zwischen zwei Phasen bei 1000 min ⁻¹) Effektivwert					
k _{tn}	$[Nm/A_{rms}]$	Drehmomentkonstante (Effektivwert bei 20 °C im Nennpunkt)					
L _{pp}	[mH]	Wicklungsinduktivität (2 Phasen) bei Nennstrom In					
m	[kg]	Masse (Motormasse ohne Bremse)					
M_0	[Nm]	Stillstandsmoment (Stillstandsdrehmoment bei S1)					
M_n	[Nm]	Nennmoment (Dauerdrehmoment bei S1)					
M_{max}	[Nm]	Spitzendrehmoment (Maximal kurzzeitig zulässiges Moment)					
n _n	[min ⁻¹]	Nenndrehzahl					
n _{max}	[min ⁻¹]	Maximale Drehzahl					
P _n	[W]	Nennleistung (Mechanische Bemessungsleistung an der Welle)					
R_{pp}	$[\Omega]$	Wicklungswiderstand (2 Phasen, bei einer Wicklungstemperatur von 20 °C),					
C _t	[%]	Lokales Rastmoment $C_t = \frac{M_{cmax} - M_{cmin}}{M_0} \times 100 \%$					
M _{cmax}	[Nm]	Lokales Maximum des Rastmomentes					
M _{cmin}	[Nm]	Lokales Minimum des Rastmomentes 0° 360°					
T _{el}	[ms]	Elektrische Zeitkonstante					
T_th	[min]	Thermische Zeitkonstante					
U _{mot}	$[V_{rms}]$	Nennspannung Motor (Spannung zwischen 2 Phasen im Nennpunkt), Effektivwert					
U _{ZK}	$[V_{DC}]$	Zwischenkreisspannung					

Lebensdauer

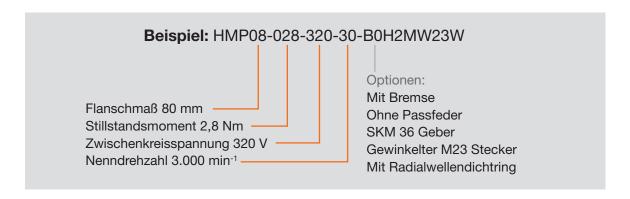
Zulässige Kräfte

Die Lebensdauer der Motoren beträgt mindestens 20.000 Stunden unter Nennbedingungen. Die als Lagerbelastung zulässigen Radialkräfte sind der untenstehenden Tabelle zu entnehmen. Der Kraftangriffspunkt liegt in der Wellenmitte (s. Grafik).

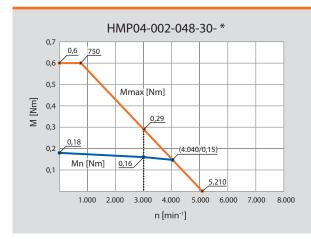
Maximale Radialkraft F_r, [N]

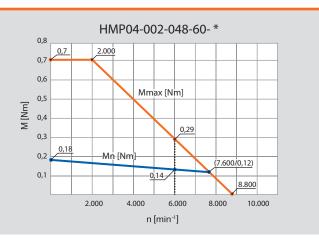

	1.000 [min ⁻¹]	2.000 [min ⁻¹]	3.000 [min ⁻¹]	4.000 [min ⁻¹]	5.000 [min ⁻¹]	6.000 [min ⁻¹]	7.000 [min ⁻¹]	8.000 [min ⁻¹]	9.000 [min ⁻¹]
HMP04-002	215	170	150	135	125	120	115	110	105
HMP04-004	235	185	160	150	135	130	125	120	115
HMP06-007	350	290	250	230	210	200	190	180	-
HMP06-015	390	310	270	250	230	220	205	195	=
HMP08-028	500	400	350	320	300	270	260	-	-
HMP08-035	520	410	360	320	300	280	265	-	-
HMP10-056	940	740	650	590	550	515	=	=	-
HMP10-075	970	770	680	615	570	540	-	-	-
HMP13-055	820	650	570	510	480	-	-	-	-
HMP13-091	860	680	590	540	500	=	-	-	=
HMP13-123	1.100	900	790	710	660	-	-	-	=
HMP13-185	1.200	960	840	760	700	-	-	-	-

Maximale Axialkraft: $F_a = 0.2 \times F_r$

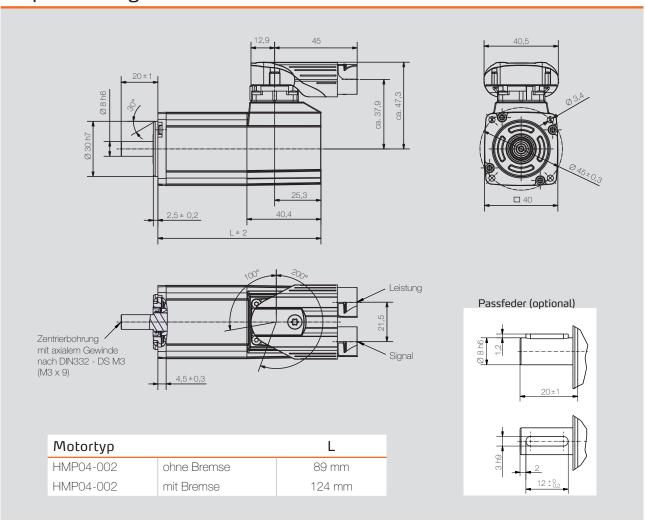

Im Stillstand ist für die Motormontage eine einmalige Axialkraft von 40 % der Radialkraft zulässig. Maximal zulässige Axial- und Radialkräfte sind nicht zusammen zulässig.

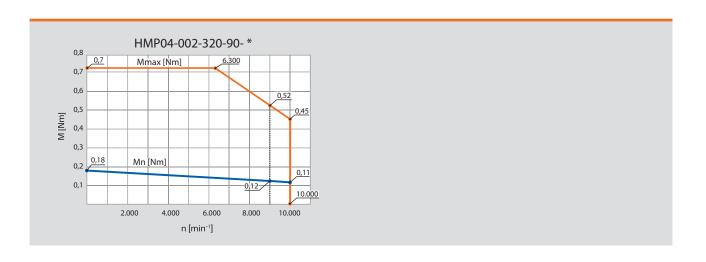
Bestellschlüssel

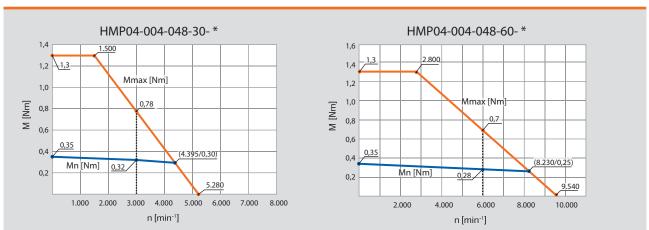

1) Nur auf Anfrage

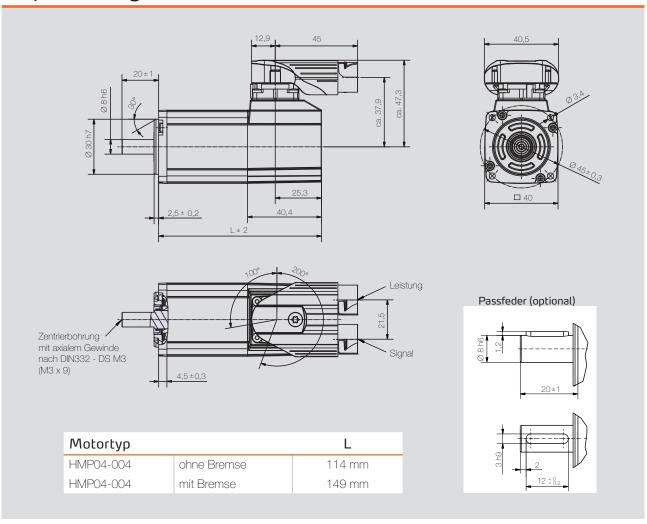


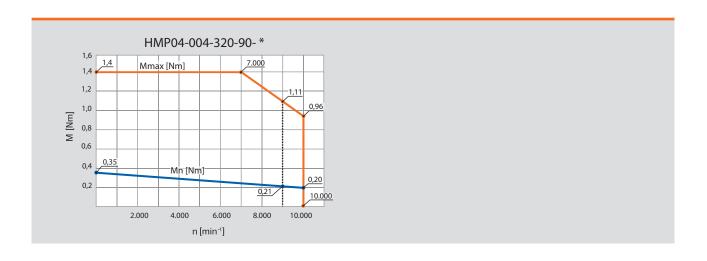
HMP04-002



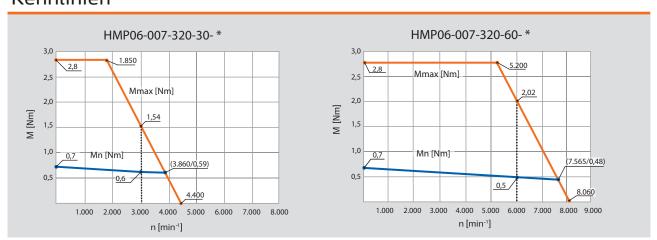

Technische Daten Motor			HMP04-002	
Nenndrehzahl [min-1]	n _n	3.000	6.000	9.000
Polpaarzahl		2	2	2
Schaltung der Motorwicklung		Υ	Υ	Υ
Zwischenkreisspannung $[V_{DC}]$	U_{zK}	48	48	320
Nennspannung Motor [V _{rms}]	U_{mot}	27	23	140
Nennleistung [W]	P_n	50	85	110
Nennmoment [Nm]	M_n	0,16	0,14	0,12
Nennstrom je Phase [A _{rms}]	l _n	1,7	3,0	0,7
Stillstandsmoment [Nm]	M _o	0,18	0,18	0,18
Stillstandsstrom je Phase [A _{rms}]	I _o	1,8	3,4	0,8
Spitzendrehmoment [Nm]	M_{max}	0,6	0,7	0,7
Spitzenstrom [A _{rms}]	l _{max}	5,7	13,0	3,2
Max. Drehzahl [min ⁻¹]	n _{max}	5.210	8.800	10.000
Spannungskonstante bei 1.000 min ⁻¹ [V _{rms}]	k _e	6,2	3,3	13,5
Drehmomentkonstante [Nm / A _{rms}]	k _t	0,09	0,05	0,17
Wicklungswiderstand (2 Phasen) bei 20 °C $[\Omega]$	R _{pp}	4,9	1,4	25,6
Wicklungsinduktivität (2 Phasen) [mH]	L _{pp}	3,0	0,8	14,8
Elektrische Zeitkonstante [ms]	T _{el}	0,6	0,6	0,6
Thermische Zeitkonstante [min]	T _{th}	15	15	15
Massenträgheitsmoment Rotor [kgcm²]	J	3,00E-02	3,00E-02	3,00E-02
Gewicht Motor [kg]	m	0,5	0,5	0,5

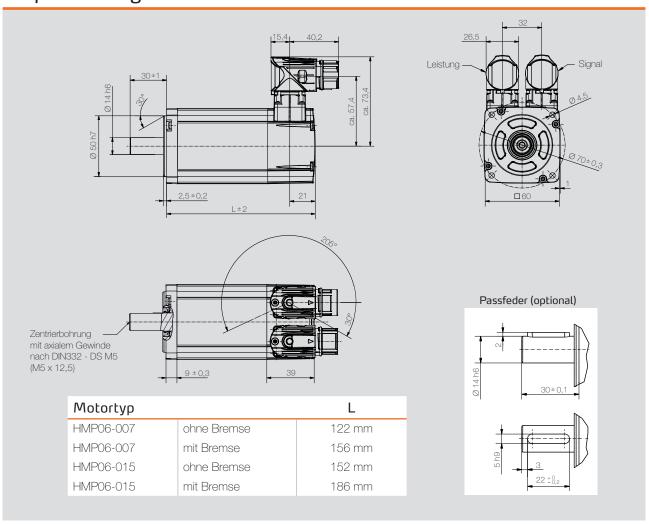


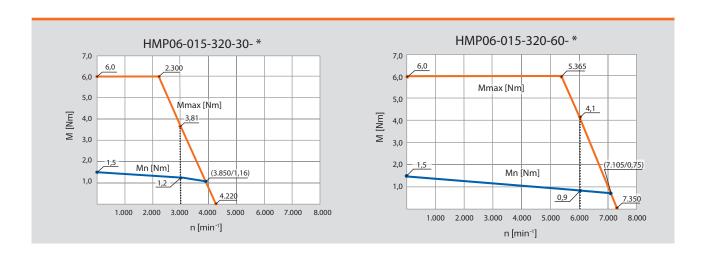

HMP04-004



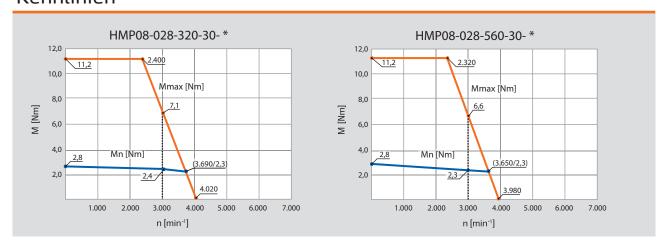
Technische Daten Motor			HMP04-004	
Nenndrehzahl [min ⁻¹]	n _n	3.000	6.000	9.000
Polpaarzahl		2	2	2
Schaltung der Motorwicklung		Υ	Υ	Υ
Zwischenkreisspannung [V _{DC}]	U _{zk}	48	48	320
Nennspannung Motor [V _{rms}]	U _{mot}	25	23	132
Nennleistung [W]	Pn	100	175	200
Nennmoment [Nm]	M _n	0,32	0,28	0,21
Nennstrom je Phase [A _{rms}]	I _n	3,3	5,7	1,2
Stillstandsmoment [Nm]	M _o	0,35	0,35	0,35
Stillstandsstrom je Phase [A _{rms}]	I _o	3,5	6,3	1,6
Spitzendrehmoment [Nm]	M _{max}	1,3	1,3	1,4
Spitzenstrom [A _{rms}]	max	12,9	23,5	6,4
Max. Drehzahl [min-1]	n _{max}	5.280	9.540	10.000
Spannungskonstante bei 1.000 min-1 [V _{rms}]	k _e	6,1	3,4	13,2
Drehmomentkonstante [Nm / A _{rms}]	k _t	0,10	0,05	0,18
Wicklungswiderstand (2 Phasen) bei 20 °C $[\Omega]$	R _{pp}	1,6	0,4	8,6
Wicklungsinduktivität (2 Phasen) [mH]	L _{pp}	1,4	0,4	6,6
Elektrische Zeitkonstante [ms]	T _{el.}	0,9	1,1	0,8
Thermische Zeitkonstante [min]	T _{th}	15	15	15
Massenträgheitsmoment Rotor [kgcm²]	J	5,40E-02	5,40E-02	5,40E-02
Gewicht Motor [kg]	m	0,7	0,7	0,7

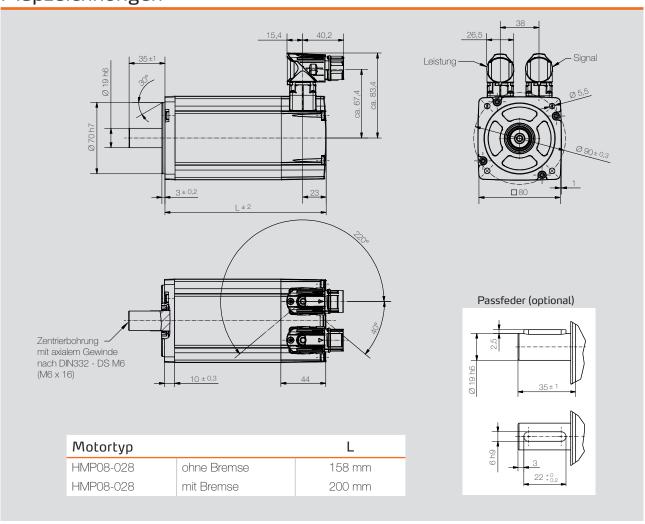


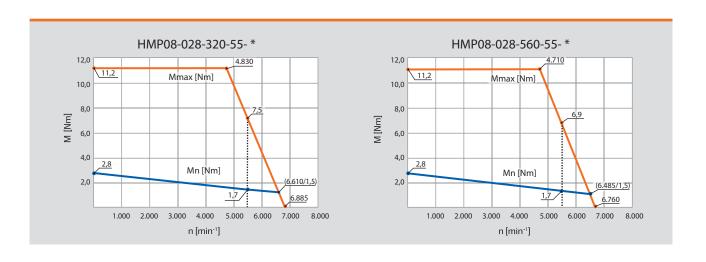

HMPo6-007 / -015



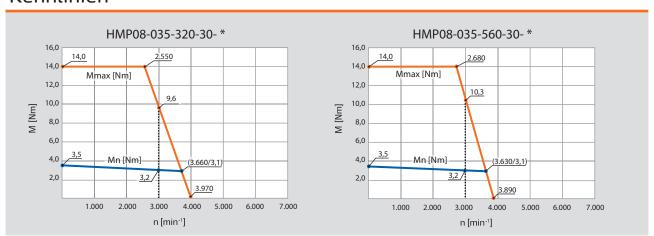
Technische Daten Motor		HMPC	06-007	HMPC	06-015
Nenndrehzahl [min-1]	n _n	3.000	6.000	3.000	6.000
Polpaarzahl		3	3	3	3
Schaltung der Motorwicklung		Υ	Υ	Y	Y
Zwischenkreisspannung $[V_{DC}]$	U_{zk}	320	320	320	320
Nennspannung Motor [V _{rms}]	U _{mot}	181	179	181	180
Nennleistung [W]	P _n	200	325	400	550
Nennmoment [Nm]	M_n	0,6	0,5	1,2	0,9
Nennstrom je Phase [A _{rms}]	l _n	0,8	1,3	1,5	2,2
Stillstandsmoment [Nm]	M _o	0,7	0,7	1,5	1,5
Stillstandsstrom je Phase [A _{rms}]	I _o	0,9	1,6	1,8	3,3
Spitzendrehmoment [Nm]	M_{max}	2,8	2,8	6,0	6,0
Spitzenstrom [A _{rms}]	 max	3,6	6,4	7,2	13,2
Max. Drehzahl [min ⁻¹]	n _{max}	4.400	8.060	4.220	7.350
Spannungskonstante bei 1.000 min ⁻¹ [V _{rms}]	k _e	49,6	27,1	51,7	27,9
Drehmomentkonstante [Nm / A _{rms}]	k _t	0,75	0,38	0,80	0,41
Wicklungswiderstand (2 Phasen) bei 20 °C $[\Omega]$	R_{pp}	26,4	8,0	9,8	3,0
Wicklungsinduktivität (2 Phasen) [mH]	L _{pp}	37,6	11,0	18,6	5,4
Elektrische Zeitkonstante [ms]	T _{el.}	1,4	1,4	1,9	1,8
Thermische Zeitkonstante [min]	T_{th}	25	25	25	25
Massenträgheitsmoment Rotor [kgcm²]	J	2,20E-01	2,20E-01	4,13E-01	4,13E-01
Gewicht Motor [kg]	m	1,45	1,45	2,0	2,0

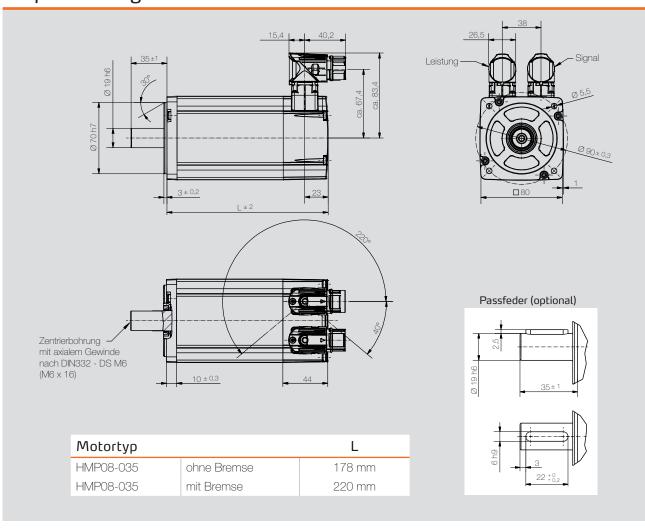


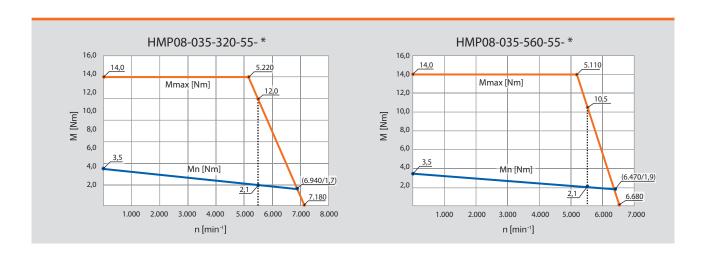

HMPo8-o28



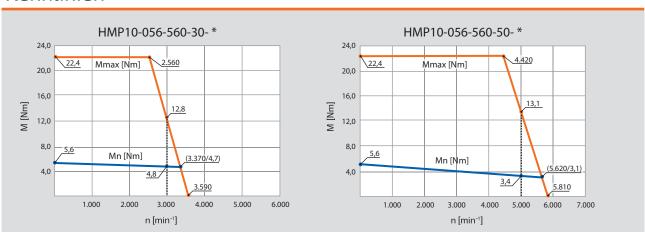
Technische Daten Motor	HMP08-028				
Nenndrehzahl [min-1]	n _n	3.000	5.500	3.000	5.500
Polpaarzahl		3	3	3	3
Schaltung der Motorwicklung		Υ	Υ	Υ	Υ
Zwischenkreisspannung [V _{DC}]	U_{zK}	320	320	560	560
Nennspannung Motor [V _{rms}]	$U_{\rm mot}$	181	179	320	314
Nennleistung [W]	P_n	750	1.000	750	1.000
Nennmoment [Nm]	M_n	2,4	1,7	2,3	1,7
Nennstrom je Phase [A _{rms}]	l _n	2,6	3,7	1,6	2,2
Stillstandsmoment [Nm]	M_{o}	2,8	2,8	2,8	2,8
Stillstandsstrom je Phase [A _{rms}]	I _o	3,1	5,6	1,8	3,3
Spitzendrehmoment [Nm]	M_{max}	11,2	11,2	11,2	11,2
Spitzenstrom [A _{rms}]	l _{max}	12,4	22,4	7,2	13,2
Max. Drehzahl [min-1]	n _{max}	4.020	6.685	3.980	6.760
Spannungskonstante bei 1.000 min-1 [V _{rms}]	k _e	54,3	30,7	95,3	54,3
Drehmomentkonstante [Nm / A _{rms}]	k _t	0,92	0,46	1,44	0,78
Wicklungswiderstand (2 Phasen) bei 20 °C $[\Omega]$	R_{pp}	4,6	1,6	14,2	4,6
Wicklungsinduktivität (2 Phasen) [mH]	L _{pp}	11,8	3,8	36,2	11,8
Elektrische Zeitkonstante [ms]	T _{el.}	2,6	2,4	2,5	2,6
Thermische Zeitkonstante [min]	T_{th}	30	30	30	30
Massenträgheitsmoment Rotor [kgcm²]	J	1,40E00	1,40E00	1,40E00	1,40E00
Gewicht Motor [kg]	m	3,2	3,2	3,2	3,2

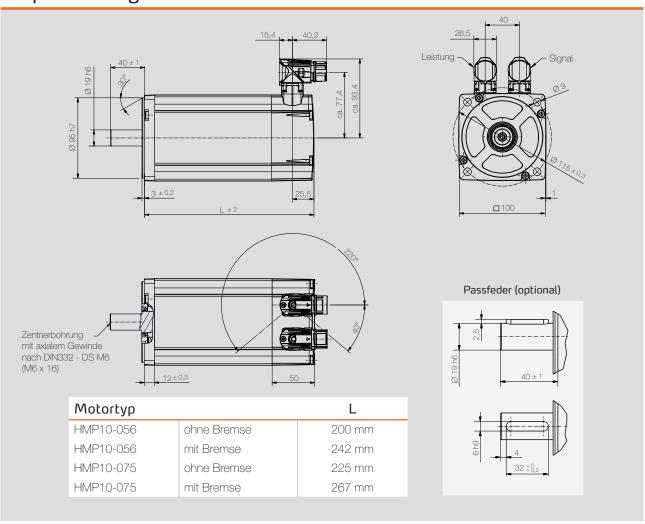


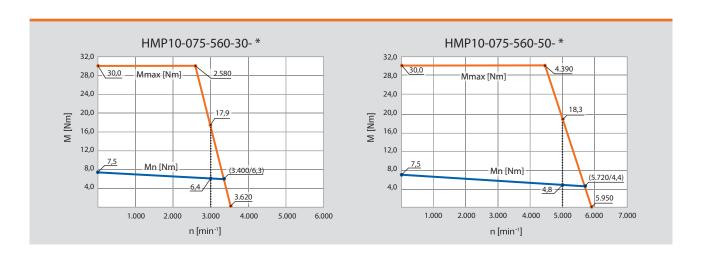

■ HMPo8-o35



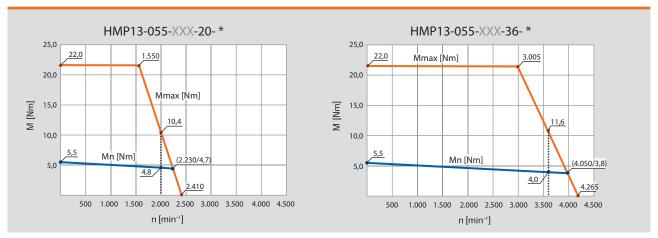
Technische Daten Motor	HMP08-035				
Nenndrehzahl [min ⁻¹]	n _n	3.000	5.500	3.000	5.500
Polpaarzahl		3	3	3	3
Schaltung der Motorwicklung		Υ	Υ	Y	Υ
Zwischenkreisspannung [V _{DC}]	U _{zk}	320	320	560	560
Nennspannung Motor [V _{rms}]	U _{mot}	181	174	320	316
Nennleistung [W]	P _n	1.000	1.200	1.000	1.200
Nennmoment [Nm]	M _n	3,2	2,1	3,2	2,1
Nennstrom je Phase [A _{rms}]	I _n	3,7	4,8	2,1	2,8
Stillstandsmoment [Nm]	M _o	3,5	3,5	3,5	3,5
Stillstandsstrom je Phase [A _{rms}]	I _o	3,9	7,1	2,2	3,9
Spitzendrehmoment [Nm]	M _{max}	14,0	14,0	14,0	14,0
Spitzenstrom [A _{rms}]	max	15,6	28,4	8,8	15,6
Max. Drehzahl [min-1]	n _{max}	3.970	7.180	3.890	6.680
Spannungskonstante bei 1.000 min ⁻¹ [V _{rms}]	k _e	55,0	30,4	97,5	55,0
Drehmomentkonstante [Nm / A _{rms}]	k _t	0,86	0,44	1,52	0,75
Wicklungswiderstand (2 Phasen) bei 20 °C $[\Omega]$	R _{pp}	2,8	0,8	9,0	2,8
Wicklungsinduktivität (2 Phasen) [mH]	L _{pp}	8,4	2,6	26,0	8,4
Elektrische Zeitkonstante [ms]	T _{el.}	3,0	3,3	2,9	3,0
Thermische Zeitkonstante [min]	T _{th}	30	30	30	30
Massenträgheitsmoment Rotor [kgcm²]	J	1,93E00	1,93E00	1,93E00	1,93E00
Gewicht Motor [kg]	m	3,85	3,85	3,85	3,85

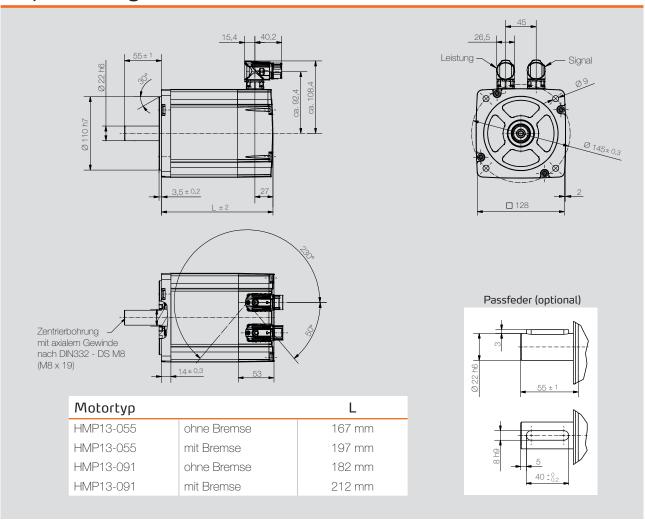


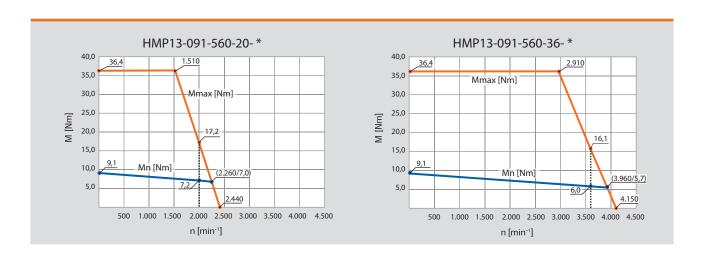

HMP10-056 / -075



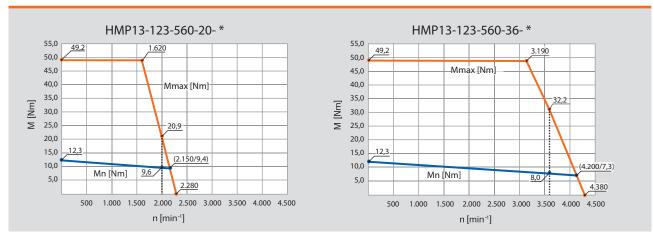
Technische Daten Motor		HMP1	0-056	HMP1	0-075
Nenndrehzahl [min-1]	n _n	3.000	5.000	3.000	5.000
Polpaarzahl		3	3	3	3
Schaltung der Motorwicklung		Υ	Y	Y	Y
Zwischenkreisspannung $[V_{\rm DC}]$	U_{zk}	560	560	560	560
Nennspannung Motor [V _{rms}]	$U_{\rm mot}$	316	316	320	318
Nennleistung [W]	P _n	1.500	1.800	2.000	2.500
Nennmoment [Nm]	M_n	4,8	3,4	6,4	4,8
Nennstrom je Phase [A _{rms}]	l _n	3,0	3,7	4,1	5,3
Stillstandsmoment [Nm]	M _o	5,6	5,6	7,5	7,5
Stillstandsstrom je Phase [A _{rms}]	Io	3,4	5,4	4,6	7,5
Spitzendrehmoment [Nm]	M_{max}	22,4	22,4	30,0	30,0
Spitzenstrom [A _{rms}]	l _{max}	13,6	21,6	18,4	30,0
Max. Drehzahl [min ⁻¹]	n _{max}	3.590	5.810	3.620	5.950
Spannungskonstante bei 1.000 min ⁻¹ [V _{rms}]	k _e	102,2	63,2	101,4	61,7
Drehmomentkonstante [Nm / A _{rms}]	k _t	1,60	0,92	1,56	0,91
Wicklungswiderstand (2 Phasen) bei 20 °C $[\Omega]$	R _{pp}	4,6	1,8	3,2	1,4
Wicklungsinduktivität (2 Phasen) [mH]	L _{pp}	19,8	7,4	15,0	5,6
Elektrische Zeitkonstante [ms]	T _{el.}	4,3	4,1	4,7	4,0
Thermische Zeitkonstante [min]	T_{th}	30	30	35	35
Massenträgheitsmoment Rotor [kgcm²]	J	4,84E00	4,84E00	6,41E00	6,41E00
Gewicht Motor [kg]	m	6,4	6,4	7,75	7,75

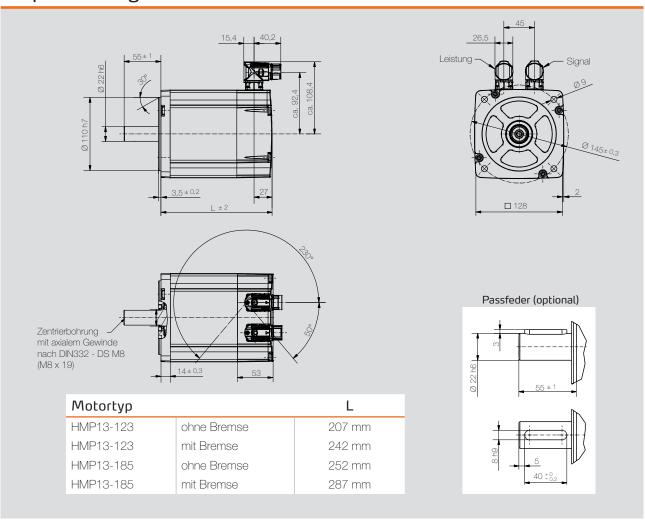


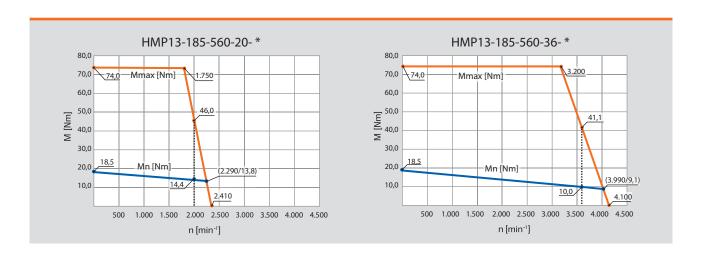

HMP13-055 / -091



Technische Daten Motor		HMP13-055				HMP13-091	
Nenndrehzahl [min-1]	n _n	2.000	3.600	2.000	3.600	2.000	3.600
Polpaarzahl		3	3	3	3	3	3
Schaltung der Motorwicklung		Y	Υ	Υ	Υ	Υ	Y
Zwischenkreisspannung $[V_{DC}]$	U _{ZK}	320	320	560	560	560	560
Nennspannung Motor [V _{rms}]	U _{mot}	178	175	317	307	315	310
Nennleistung [W]	P _n	1.000	1.500	1.000	1.500	1.500	2.250
Nennmoment [Nm]	M _n	4,8	4,0	4,8	4,0	7,2	6,0
Nennstrom je Phase [A _{rms}]	l _n	4,1	6,0	2,3	3,4	3,4	5,0
Stillstandsmoment [Nm]	M _o	5,5	5,5	5,5	5,5	9,1	9,1
Stillstandsstrom je Phase [A _{rms}]	I _o	4,8	8,2	2,7	4,7	4,4	7,7
Spitzendrehmoment [Nm]	M _{max}	22,0	22,0	22,0	22,0	36,4	36,4
Spitzenstrom [A _{rms}]	l _{max}	19,0	32,8	10,8	18,8	17,6	30,8
Max. Drehzahl [min ⁻¹]	n _{max}	2.480	4.220	2.340	4.310	2.440	4.150
Spannungskonstante bei 1.000 min-1 [V _{rms}]	k _e	85,0	49,0	164,0	85,0	155,0	86,0
Drehmomentkonstante [Nm / A _{rms}]	k _t	1,17	0,67	2,09	1,18	2,12	1,20
Wicklungswiderstand (2 Phasen) bei 20 °C $[\Omega]$	R _{pp}	3,5	1,1	10,9	3,5	6,1	1,9
Wicklungsinduktivität (2 Phasen) [mH]	L _{pp}	15,0	5,0	47,8	15,0	32,2	10,4
Elektrische Zeitkonstante [ms]	T _{el.}	3,9	3,9	4,2	4,2	4,9	4,9
Thermische Zeitkonstante [min]	T _{th}	35	35	35	35	42	42
Massenträgheitsmoment Rotor [kgcm²]	J	9,82E00	9,82E00	9,82E00	9,82E00	1,40E01	1,40E01
Gewicht Motor [kg]	m	7,0	7,0	7,0	7,0	8,6	8,6




■ HMP13-123 / -185



Technische Daten Motor		HMP1	3-123	HMP1	3-185
Nenndrehzahl [min ⁻¹]	n _n	2.000	3.600	2.000	3.600
Polpaarzahl		3	3	3	3
Schaltung der Motorwicklung		Υ	Υ	Y	Υ
Zwischenkreisspannung $[V_{\rm DC}]$	U_{zK}	560	560	560	560
Nennspannung Motor [V _{rms}]	$U_{\rm mot}$	316	308	319	318
Nennleistung [W]	P _n	2.000	3.000	3.000	3.750
Nennmoment [Nm]	M_n	9,6	8,0	14,4	10,0
Nennstrom je Phase [A _{rms}]	l _n	4,5	6,7	6,5	8,0
Stillstandsmoment [Nm]	M _o	12,3	12,3	18,5	18,5
Stillstandsstrom je Phase [A _{rms}]	I _o	4,7	10,3	8,4	14,8
Spitzendrehmoment [Nm]	M_{max}	49,2	49,2	74,0	74,0
Spitzenstrom [A _{rms}]	l _{max}	18,8	41,2	33,6	59,2
Max. Drehzahl [min ⁻¹]	n _{max}	2.280	4.380	2.410	4.100
Spannungskonstante bei 1.000 min-1 [V _{rms}]	k _e	161,0	85,0	150,0	93,0
Drehmomentkonstante [Nm / A _{rms}]	k _t	2,13	1,19	2,22	1,25
Wicklungswiderstand (2 Phasen) bei 20 °C [Ω]	R _{pp}	3,6	1,0	1,75	0,6
Wicklungsinduktivität (2 Phasen) [mH]	L _{pp}	21,2	6,6	13,2	4,2
Elektrische Zeitkonstante [ms]	T _{el.}	5,4	5,4	5,4	5,4
Thermische Zeitkonstante [min]	T _{th}	49	49	49	49
Massenträgheitsmoment Rotor [kgcm²]	J	2,11E01	2,11E01	3,38E01	3,38E01
Gewicht Motor [kg]	m	10,7	10,7	14,8	14,8

Variantenübersicht

Geber

Alle HeiMotion Premium-Motoren sind im Standard mit einem Resolver ausgestattet. Optional können an die Baureihe diverse Geber mit unterschiedlichen Schnittstellen angebaut werden.

Motortyp	Resolver *	CKS36	ECI 1118	EQI 1131	HS/M ₁ 6
	Standard	Inkremental- geber	EnDat 2.2	EnDat 2.2	
HMP04	X		X		X
HMP06	X	X	X	X	X
HMP08	X	X	X	X	X
HMP10	X	X	X	X	X
HMP13	X	X	X	X	X
	Seite 28	Seite 29	Seite	e 30	Seite 38

^{*} Auch sicher angebaut erhältlich

Motortyp	SEK/ SEL37	SKS/ SKM36 *	SRS/ SRM50	EES/ EEM37	EKS/ EKM36 *	EFS/ EFM50	HES/ HEM
	HIPERFACE [®]	HIPERFACE [®]	HIPERFACE [®]	HIPERFACE DSL [®]	HIPERFACE DSL [®]	HIPERFACE DSL [®]	Hall-Encoder
HMP04	X						X
HMP06	X	X		X	X		X
HMP08	X	X	X	X	X	X	X
HMP10	X	X	X	X	X	X	X
HMP13	X	X	X	X	X	X	X
		Seite 32			Seite 34		Seite 36

^{*} Auch sicher angebaut erhältlich

Feedbacksystem Übersicht

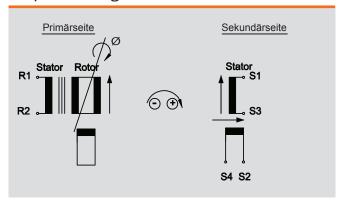
Feedback-System	HCD	HCB	HCF	HCJ
Resolver		X	X	X
HIPERFACE® Geber		X		X
HIPERFACE DSL®-Geber		X		X
Inkrementalgeber		X	X	X
SSI/BiSS	X	X	X (nur SSI)	X
EnDat Geber		X		X
	Seite 48	Seite 50	Seite 54	Seite 56

Anschlusstechnik

Motortyp	Y-Tec	2 x M23	I-Tec	1 x M23
HMP04	X			
HMP06	×	X	X	×
HMP08	X	X	X	X
HMP10	X	X	X	X
HMP13	X	X	X	X
	Seite 40	Seite 42	Seite 44	Seite 45

Standardmäßig gewinkelt, drehbare Ausführung, Alternativen auf Anfrage möglich. Twintus und Kabeldirektabgang auf Anfrage erhältlich.

Standard Resolver


Technische Daten	RE-15
Polpaarzahl	1
Eingangsfrequenz	10 kHz
Eingangsspannung	7 V _{rms}
Eingangsstrom typ.	50 mA
Transformationsverhältnis	0,5 ± 10 %
Phasenverschiebung (Informationswert) Ohmscher Widerstand	3 ± 3°
Statorwicklung Rotorwicklung	(bei 25 °C) 70 ± 10 % (bei 25 °C) 24 ± 10 %
Impedanzen	(50120 0) 21 ± 10 /0
Zro (Rotorleerlaufimpedanz)	typ. 86 j 120
Zrs (Rotorkurzschlussimpedanz)	typ. 70 j 105
Zso (Statorleerlaufimpedanz)	typ. 140 j 273
Zss (Statorkurzschlussimpedanz)	typ. 122 j 244
Restspannung max.	30 mV
Elektrischer Fehler max.	± 10'
Masse	77 g
Schutzart Resolver	IP20
Isolationsklasse	F
Isolationstest Gehäuse/Windung	500 V _{AC} / 50 Hz / 1 s
Rotorträgheitsmoment	15 gcm ²

Beständigkeiten

Destallalghenen	
Arbeitsumgebung	IE 32 nach EN 60721-3-3
Arbeitstemperaturen	- 55 °C – 155 °C
Schwingungsfestigkeit nach EN 60068-2-6 im Bereich von	100 m/s² 10 - 150 Hz
Stoßfestigkeit bei	400 m/s ² 6 ms
Arbeitsdrehzahl max.	20.000 min ⁻¹

Maßzeichnungen

Sicherheitstechnische Kenngrößen

Sicherheits-Integritätslevel	SIL 2 (EN 61800-5-2 / EN 62061)
Kategorie	3 (EN ISO 13849-1)
Performance Level	PLd (EN ISO 13849-1)

Option Inkrementalgeber

Optische Systeme

CKS36 (Inkrementalgeber)

Technische Daten:

· Auflösung: 2.048 Impulse je Umdrehung

· Anzahl Polpaare: 3

· Nullimpuls: 90°

Technische Daten nach DIN 32878

\mathbf{C}	K	5	2	6
L	$\mathbf{\Gamma}$	_	≺	u

Teeningene Baten nacht	5114 520/0	CK530		
Strichzahl pro Umdrehung		2.048		
Kommutierungssignale		3 Polpaare		
Messschritt		90° / Strichzahl		
Referenzsignal	Anzahl Lage	1 90° elektr., logisch verknüpft mit A u. B		
Fehlergrenzen	"binäre" Strichzahlen "nicht binäre" Strichzahlen	± 0,09° ± 0,13°		
Messschrittabweichung	"binäre" Strichzahlen "nicht binäre" Strichzahlen	± 0,035° ± 0,07°		
Max. Ausgabefrequenz	TTL/RS 422	400 kHz		
Widerstandsfähigkeit	gegenüber Schocks gegenüber Vibration	100 g (6 ms) 50 g (10 2.000 Hz)		
Betriebsspannungsbereich		5 V ± 10 %		
Max. Betriebsstrom ohne Last		60 mA		
Schnittstellensignale:	Inkremental- und Kommutierungssignale Parametrierschnittstelle	gemäß EIA 422 IIC-Bus		

Optionen Absolutwertgeber

Induktive Systeme EnDat 2.2

ECI1118

(Singleturngeber)

Technische Daten:

- · Induktives Gebersystem ohne Eigenlagerung
- · Rein serielle EnDat 2.2 Schnittstelle
- \cdot Für Maschinen mit hohen Anforderungen an Dynamik und Robustheit
- · Hohe Systemgenauigkeit
- · Digitale Datenübertragung
- · Elektronisches Typenschild

EQI1131

(Multiturngeber)

Technische Daten:

- · Induktives Gebersystem ohne Eigenlagerung
- · Multiturnfunktion über Getriebe
- · Rein serielle EnDat 2.2 Schnittstelle
- · Für Maschinen mit hohen Anforderungen an Dynamik und Robustheit
- · Hohe Systemgenauigkeit
- · Digitale Datenübertragung
- · Elektronisches Typenschild

Technische Daten	ECI1118	EQI1131
Geberart	induktiv	induktiv
Positionswerte pro Umdrehung	262.144 18 Bit	524.288 19 Bit
Umdrehungen	-	4.096 12 Bit
Rechenzeit	≤ 6 µs	≤ 5 µs
Taktfrequenz	≤ 8 MHz	≤ 16 MHz
Systemgenauigkeit	± 120"	± 120"
Max. Arbeitstemperatur	+ 115 °C - 20 °C	+ 110 °C - 40 °C
Zulässige Drehzahl	15.000 min-1	12.000 min-1
Spannungsversorgung	3,6 - 14 V _{DC}	3,6 - 14 V _{DC}
Max. Leistungsaufnahme	520 - 600 mW	700 - 850 mW
Stromaufnahme bei 5 V (typisch)	80 mA	115 mA
Multiturn	-	Getriebe
Vibration 55 Hz bis 2.000 Hz Schock 6 ms	≤ 300 m/s² ≤ 1.000 m/s²	$\leq 400 \text{ m/s}^2$ $\leq 2.000 \text{ m/s}^2$
Digitale Schnittstelle	EnDat 2.2	EnDat 2.2

Optionen Absolutwertgeber

Kapazitive Systeme - HIPERFACE®

SEK / SEL₃₇

(Single- / Multiturngeber)

Technische Daten:

- · 16 Sinus- / Cosinusperioden je Umdrehung
- · Absolute Position mit einer Auflösung von 512 Schritten je Umdrehung
- · 4.096 Umdrehungen messbar (Multiturn)
- · Programmierung des Positionswertes
- · HIPERFACE®-Schnittstelle
- · Elektronisches Typenschild

Optische Systeme - HIPERFACE®

SKS / SKM₃6

(Single- / Multiturngeber)

Technische Daten:

- · 128 Sinus- / Cosinusperioden je Umdrehung
- · Absolute Position mit einer Auflösung von 4.096 Schritten je Umdrehung
- · 4.096 Umdrehungen messbar (Multiturn)
- · Programmierung des Positionswertes
- · HIPERFACE®-Schnittstelle
- · Elektronisches Typenschild

SRS / SRM50

(Single- / Multiturngeber)

Technische Daten:

- · 1.024 Sinus- / Cosinusperioden je Umdrehung
- · Absolute Position mit einer Auflösung von 32.768 Schritten je Umdrehung
- · 4.096 Umdrehungen messbar (Multiturn)
- \cdot Programmierung des Positionswertes
- · HIPERFACE®-Schnittstelle
- · Elektronisches Typenschild

Technische Daten	SEK/SEL ₃₇	SKS/SKM ₃ 6	SRS/SRM ₅₀
Anzahl Sin/Cos-Perioden pro Umdrehung	16	128	1.024
Anzahl der absolut erfassbaren Umdrehungen	Single SEK 1 Multi SEL 4.096	Single SKS 1 Multi SKM 4.096	Single SRS 1 Multi SRM 4.096
Codeart für den Absolutwert	binär	binär	binär
Codeverlauf 1)	steigend	steigend	steigend
Messschritt bei Interpolation der Sinus- / Cosinussignale mit z.B. 12 Bit	20 Winkelsec.	2,5 Winkelsec.	0,3 Winkelsec.
Fehlergrenzen bei Auswertung der Sinus-/ Cosinussignale, integrale Nichtlinearität	± 288 Winkelsec.	± 80 Winkelsec.	± 45 Winkelsec.
Nichtlinearität einer Sinus- / Cosinusperiode differentielle Nichtlinearität	± 144 Winkelsec. ²⁾	± 40 Winkelsec. 2)	± 7 Winkelsec. 2)
Ausgabefrequenz für Sinus- / Cosinussignale	-	0 65 kHz	0 200 kHz
Widerstandsfähigkeit gegenüber Schocks	100 g / 10 ms	100 g / 6 ms	100 g / 10 ms
Widerstandsfähigkeit gegenüber Vibration	50 g / 102.000 Hz	50 g / 102.000 Hz	50 g / 102.000 Hz
Betriebsspannungsbereich	712 V	712 V	712 V
Empfohlene Versorgungsspannung	8 V	8 V	8 V
Max. Betriebsstrom ohne Last	< 50 mA	60 mA	80 mA
Verfügbarer Speicherbereich im EEPROM 2048 3	1.792 Byte	1.792 Byte	1.792 Byte
Schnittstellensignale Prozessdatenkabel = SIN, REFSIN, COS, REFCOS Parameterkanal = RS 485	analog, differentiell digital	analog, differentiell digital	analog, differentiell digital

Sicherheitstechnische Kenngrößen

SKS/SKM36S

Sicherheit-Integritätslevel 4)	-	SIL2 (EN 61800-5-2 / EN 62061)	-
Kategorie 4)	-	3 (EN ISO 13849-1)	-
Performance Level 4)	-	PL d (EN ISO 13849-1)	-

Bei Drehung der Welle im Uhrzeigersinn mit Blick in Richtung "A"
 Bei Nominallage ± 0,1 mm
 Bei Verwendung des elektronischen Typenschilds in Wirkverbindung mit numerischen Steuerungen ist das Patent EP 425 912 B 2 zu beachten; ausgenommen hiervon ist die Verwendung in Wirkverbindung mit Drehzahlreglern.
 Sicherheitstechnische Kenngrößen gelten nur für Motoren mit sicher angebauten Gebern.

Optionen Absolutwertgeber

Kapazitive Systeme - HIPERFACE DSL®

EES / EEM₃₇

(Single- / Multiturngeber)

Technische Daten:

- · Absolute Position mit einer Auflösung von 131.072 Schritten je Umdrehung
- · 4.096 Umdrehungen messbar (Multiturn)
- · Programmierung des Positionswertes
- · HIPERFACE DSL®-Schnittstelle
- · Elektronisches Typenschild

Optische Systeme - HIPERFACE DSL®

EKS / EKM₃6

(Single- / Multiturngeber)

Technische Daten:

- · Absolute Position mit einer Auflösung von 262.144 Schritten je Umdrehung
- · 4.096 Umdrehungen messbar (Multiturn)
- · Programmierung des Positionswertes
- · HIPERFACE DSL®-Schnittstelle
- · Elektronisches Typenschild

HIPERFACE:

EFS / EFM50

(Single- / Multiturngeber)

Technische Daten:

- Absolute Position mit einer Auflösung von 8.388.608 Schritten je Umdrehung
- · 4.096 Umdrehungen messbar (Multiturn)
- · Programmierung des Positionswertes
- · HIPERFACE DSL®-Schnittstelle
- · Elektronisches Typenschild

HIPERFACE.

Technische Daten	EES/EEM ₃₇	EKS/EKM ₃ 6	EFS/EFM ₅₀
Anzahl Sin/Cos-Perioden / Umdrehung	-	-	-
Anzahl der absolut erfassbaren Umdrehungen	Single EES1 Multi EEM 4,096	Single EKS 1 Multi EKM 4,096	Single EFS 1 Multi EFM 4.096
Codeart für den Absolutwert	binär	binär	binär
Codeverlauf 1)	steigend	steigend	steigend
Messschritt bei Interpolation der Sinus- / Cosinussignale mit z.B. 12 Bit	-	-	-
Fehlergrenzen bei Auswertung der Sinus-/ Cosinussignale, integrale Nichtlinearität	± 160 Winkelsec. ²⁾	± 80 Winkelsec.	± 45 Winkelsec.
Nichtlinearität einer Sinus- / Cosinusperiode differentielle Nichtlinearität	-	± 40 Winkelsec.	± 7 Winkelsec.
Ausgabefrequenz für Sinus- / Cosinussignale	-	0 75 KHz (digitaler Positionswert)	0 75 kHz (digitaler Positionswert)
Widerstandsfähigkeit gegenüber Schocks	100 g / 6 ms	100 g / 6 ms	100 g / 6 ms
Widerstandsfähigkeit gegenüber Vibration	50 g / 102.000 Hz	50 g / 102.000 Hz	30 g / 102.000 Hz
Betriebsspannungsbereich	712 V	712 V	712 V
Empfohlene Versorgungsspannung	-	8 V	9 V
Max. Betriebsstrom ohne Last	150 mA	150 mA	150 mA
Verfügbarer Speicherbereich im EEPROM 2048 3)	8.192 Byte	8.192 Byte	8.192 Byte
Schnittstellensignale Prozessdatenkabel = SIN, REFSIN, COS, REFCOS Parameterkanal = RS 485	differentiell, digital	differentiell, digital	differentiell, digital
Sicherheitstechnische Kenngrößen		EKS/EKM36-2	
Sicherheit-Integritätslevel 4)	-	SIL2 (EN 61800-5-2 / EN 62061)	-
Kategorie 4)	-	3 (EN ISO 13849-1)	-

Performance Level 4)

PL d (EN ISO 13849-1)

¹⁾ Bei Drehung der Welle im Uhrzeigersinn mit Blick in Richtung "A". 2) Systemgenauigkeit

³⁾ Bei Verwendung des elektronischen Typenschilds in Wirkverbindung mit numerischen Steuerungen ist das Patent EP 425 912 B 2 zu beachten; ausgenommen hiervon ist die Verwendung in Wirkverbindung mit Drehzahlreglern.
4) Sicherheitstechnische Kenngrößen gelten nur für Motoren mit sicher angebauten Gebern.

Optionen Heidrive Geber

HES1-002

Technische Daten:

- · Singleturn-Geber mit 12 Bit Auflösung (interpoliert 14 Bit)
- · SSI-Schnittstelle differentiell und single ended
- · Differentielle Sin/Cos Spuren mit 1,0 Vpp

HEM1-001

Technische Daten:

- · Multiturn-Geber mit 32 Bit (≈ 4,2 Milliarden Umdrehungen messbar)
- · Singletumgeber mit 12 Bit Auflösung (interpoliert 14 Bit)
- · SSI-Schnittstelle differentiell und single ended
- · Differentielle Sin/Cos-Spuren mit 1,0 V_{DD}
- · Externer Batterieanschluss

HEM1-002*

Technische Daten:

- \cdot Multiturn-Geber mit bis zu 32 Bit ($\approx 4,\!2$ Milliarden Umdrehungen messbar)
- · 12 Bit Singleturn-Auflösung (interpoliert 14 Bit)
- · SSI-Schnittstelle differentiell und single ended
- · Differentielle Sin/Cos-Spuren mit 1,0 Vpp
- · Batterie on board

HES₃

Technische Daten:

- \cdot Singleturn-Geber mit 10 Bit Auflösung (interpoliert 12 Bit)
- · Kommutierungs- und Inkrementalsignale ABZ differentiell und single ended
- · Kommutierungssignale für 2/4/6 oder 8-polige Motoren

^{*}Weitere Informationen für Ihre Applikation auf Anfrage

Technische Daten (nach DIN 32878)	HES1-002	HEM1-001	HEM1-002	HES ₃
Durchmesser (mm)	34,95 ± 0,05	34,95 ± 0,05	34,95 ± 0,05	34,95 ± 0,05
Versorgungsspannung	5,0 V _{DC} ± 10 %	5,0 V _{DC} ± 10 %	5,0 V _{DC} ± 10 %	5,0 V _{DC} ± 10 %
Max. Ausgangsstrom pro Ausgang	50 mA	50 mA	50 mA	50 mA
Max. Auflösung Singleturn	12 Bit 0,088°	12 Bit 0,088°	12 Bit 0,088°	10 Bit 0,35
Max. Auflösung Singleturn interpoliert	14 Bit 0,022°	14 Bit 0,022°	14 Bit 0,022°	12 Bit 0,088°
Max. Anzahl der absolut erfassten Umdrehungen	-	32 Bit ≈ 4,2 Milliarden	32 Bit ≈ 4,2 Milliarden	-
Pufferbatterieanschluss für Multiturn-Geber	-	extern	onboard	-
SSI-Schnittstelle	differentiell u. single ended	differentiell u. single ended	differentiell u. single ended	-
Max. Arbeitsfrequenz SSI	4 MHz	4 MHz	4 MHz	-
Sin/Cos Spuren	differentiell	differentiell	differentiell	-
Anzahl Sin/Cos-Perioden pro Umdrehung	1	1	1	-
Amplitude Sin/Cos	1,0 V _{pp}	1,0 V _{pp}	1,0 V _{pp}	-
Inkrementalsignale (ABZ)	-	-	-	differentiell
High-Level Ausgangsspannung ABZ	-	-	-	Min. 3,8 V
Low-Level Ausgangsspannung ABZ	-	-	-	Max. 0,7 V
Kommutierungssignale (UVW)	-	-	-	differentiell
High-Level Ausgangsspannung UVW	-	-	-	Min. 3,8 V
Low-Level Ausgangsspannung UVW	-	-	-	Max. 0,7 V
ESD-Spannung	2 kV	2 kV	2 kV	2 kV
zulässiger Betriebs-Temperaturbereich		-30°C bi	s +105°C	
zulässige Lagertemperatur		-30°C bi	s +125°C	
zuslässige relative Luftfeuchtigkeit		15 bis 85 % c	hne Betauung	
Bestellnummer	XXM2SXXXX	XXM1MXXXX	XXM2MXXXX	XXM1IXXXX

Geber HS/M 16

Merkmale:

- Integrierter, kompakter Dual Encoder im Standard HeiMotion Baukasten
- Singleturn mit SSI und Sin/Cos
- Multiturn mit BiSS-C
- Drehzahlen bis zu 12000 min⁻¹
- Temperaturauswertung über BiSS-C möglich
- Elektronisches Typenschild auf Anfrage möglich

Technische Daten	HS 16 (Singleturn)	HM 16 (Multiturn)
Versorgungsspannung	5,0 V _{DC} +10/-5%	5,0 V _{DC} +10/-5%
Leistungsverbrauch	0,6 W	0,6 W
Max. Auflösung Singleturn	16 Bit	16 Bit
Max. Anzahl der absolut erfassten Umdrehungen	-	12 Bit (mechanisch)
Datenschnittstelle	SSI gray + SinCos 1Vpp	BiSS-C + SinCos 1Vpp
Sin/Cos Spuren	differentiell	differentiell
Anzahl Sin/Cos-Perioden pro Umdrehung	256 (8 Bit)	256 (8 Bit)
Max. Winkelbeschleunigung	100.000 rad/sec ²	100.000 rad/sec ²
Widerstandsfähigkeit gegenüber Schocks (DIN EN 60068-2-27)	3000 m/s² (6ms)	3000 m/s² (6ms)
Widerstandsfähigkeit gegenüber Vibration (DIN EN 60068-2-6)	300 m/s²	300 m/s²
Bestellschlüssel	XXS1SXXXX	XXB1MXXXX

Option Bremse

Als Bremsen werden Permanentmagnet-Gleichspannungs-Ruhestrom-Bremsen eingesetzt.

Isolationsklasse: F (155 °C)

Max. Drehzahl: 10.000 min⁻¹

Spannungsversorgung: 24 V_{DC} + 6 % / - 10 %

	НМ	HMPo4		Po6	HMPo8	
Technische Daten Bremse	-002	-004	-007	-015	-028	-035
Motor-Massenträgheitsmoment inkl. Bremse * [kgcm²]	5,50E-02	7,90E-02	3,19E-01	5,12E-01	1,68E00	2,20E00
Bremsmoment statisch min. bei 20°C [Nm]	0,4	0,4	2,0	2,0	4,5	4,5
Bremsmoment dynamisch bei 20°C [Nm]	0,3	0,3	1,7	1,7	3,8	3,8
Aufnahmeleistung Bremse bei Nennspannung und 20°C [W]	8	8	11	11	12	12
Spannung Bremse [V _{DC}]	24	24	24	24	24	24
Aufnahmestrom Bremse bei 20°C [A]	0,33	0,33	0,46	0,46	0,50	0,50
Reibarbeit Bremse [kJ]	180	180	410	410	580	580
Trennzeit Bremse [ms]	≤10	≤10	≤40	≤40	≤38	≤38
Ansprechverzug Bremse [ms]	≤2	≤2	≤3	≤3	≤3	≤3
Schließzeit [ms]	≤6	≤6	≤15	≤15	≤20	≤20
Motorgewicht inkl. Bremse * [kg]	0,65	0,85	1,8	2,35	3,85	4,5
Schlupfzeit ** [s]	0,5	0,5	0,5	0,5	0,5	0,5
Leerlaufzeit ** [s]	0,5	0,5	0,5	0,5	0,5	0,5
Drehzahl ** [min-1]	250	250	100	100	100	100
Schaltungen ** [-]	5	5	5	5	5	5

	НМ	P10				
Technische Daten Bremse	-056	-075	-055	-091	-123	-185
Motor-Massenträgheitsmoment inkl. Bremse * [kgcm²]	5,63E00	7,20E00	1,05E01	1,48E01	2,31E01	3,58E01
Bremsmoment statisch min. bei 20°C [Nm]	9,0	9,0	9,0	9,0	20	20
Bremsmoment dynamisch bei 20°C [Nm]	7,5	7,5	7,5	7,5	15	15
Aufnahmeleistung Bremse bei Nennspannung und 20°C [W]	18	18	18	18	28	28
Spannung Bremse [V _{DC}]	24	24	24	24	24	24
Aufnahmestrom Bremse bei 20°C [A]	0,75	0,75	0,75	0,75	1,17	1,17
Reibarbeit Bremse [kJ]	890	890	890	890	1.290	1.290
Trennzeit Bremse [ms]	≤70	≤70	≤70	≤70	≤90	≤90
Ansprechverzug Bremse [ms]	≤3	≤3	≤3	≤3	3	3
Schließzeit [ms]	≤30	≤30	≤30	≤30	≤35	≤35
Motorgewicht inkl. Bremse * [kg]	7,4	8,75	8,0	9,4	12,2	16,4
Schlupfzeit ** [s]	0,5	0,5	0,5	0,5	0,5	0,5
Leerlaufzeit ** [s]	0,5	0,5	0,5	0,5	0,5	0,5
Drehzahl ** [min-1]	100	100	100	100	75	75
Schaltungen ** [-]	5	5	5	5	5	5

^{*} Inkl. komplettem Anbau

Der Betrieb der Motoren darf nicht gegen die geschlossene Bremse erfolgen. Die Bremse des Motors ist als Haltebremse im Stillstand konzipiert. Ein NOT-STOP des laufenden Motors ist im Ausnahmefall zulässig. Die Anzahl der NOT-STOPS wird von dem Trägheitsmoment des Gesamtsystems begrenzt.

^{**} Um die optimale Funktion der Bremse jederzeit zu gewährleisten, wird bei erstmaliger Inbetriebnahme sowie im Intervall von vier Wochen der jeweilige Wartungszyklus (Refreshment) empfohlen.

Option Stecker Y-Tec

10

11

10

11

CLK -

ÜHS+

ÜHS -

Leis	tung	Sigr Res	nal olver	Sigr HIP	nal ERFACE®	Sign SSI/		Sign EnD	ial at 2.2
Pin	Funktion	Pin	Funktion	Pin	Funktion	Pin	Funktion	Pin	Funktion
А	U	1	COS +	1	COS +	1	COS +	1	-
В	V	2	cos - / refcos	2	cos - / refcos	2	cos - / refcos	2	-
С	W	3	sin +	3	sin +	3	sin +	3	-
Erdung	PE	4	sin- / refsin	4	sin- / refsin	4	sin- / refsin	4	-
1	ÜHS + 2)	5	R1 (ref +)	5	Daten +	5	V _{cc} / 5 V	5	Up
2	ÜHS - ²⁾	6	R2 (ref -)	6	Daten -	6	GND	6	GND/0V
3	Bremse + 1)	7	-	7	Us	7	Daten +	7	Daten +
4	Bremse - 1)	8	-	8	GND	8	Daten -	8	Daten -
5	-	9	ÜHS + / Temp +	9	ÜHS + / Temp +	9	CLK +	9	CLK +

ÜHS - / Temp -

10

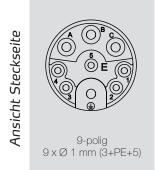
11

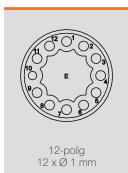
CLK -

ÜHS+/Temp+3)

4) Batterie - bei HEM1-001

10


11


ÜHS - / Temp -

Motorstecker


1) Falls vorhanden 2) Nur bei CKS 36, HES3

und HEM1-001



ESTA 002 NN00 33 0001 000 (Kabelklemmber. 8,5-10,5 mm)

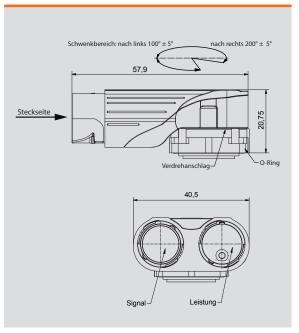
Intercontec Bezeichnung ESTA 002 NN00 33 0001 000 (Kabelklemmber. 8,5-10,5 mm)

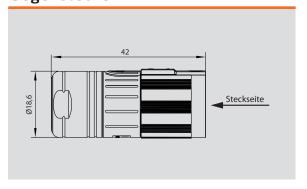
(Kabelklemmber. 8,5-10,5 mm)

¹² 12 12 ÜHS - / Temp - 4) 3) Batterie + bei HEM1-001

Signal Inkrementel

Pin	Funktion
1	Z
2	Z
3	А
4	Ā
5	В
6	Ē
7	U (R)
8	Ū (R)
9	V (S)
10	V (S)
11	W (T)
12	₩ (T)
А	Vcc/5V
В	GND
С	-





Gegenstecker mit Metallverschraubung wie abgebildet oder mit Kunststoffverschraubung

Motorstecker drehbare Winkeleinbaudose Y-Tec

Option Stecker M23

Leistung

Signal Resolver

Signal	
HIPERFACE®	

Signal SSI/BiSS

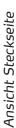
Signal EnDat 2.2

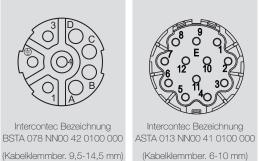
	•								
Pin	Funktion	Pin	Funktion	Pin	Funktion	Pin	Funktion	Pin	Funktion
А	Bremse + 1)	1	COS +	1	COS +	1	COS +	1	-
В	Bremse - 1)	2	cos - / refcos	2	cos - / refcos	2	cos - / refcos	2	-
С	ÜHS +	3	sin +	3	sin +	3	sin +	3	-
D	ÜHS -	4	sin - / refsin	4	sin - / refsin	4	sin - / refsin	4	-
1	U	5	-	5	-	5	V _{cc} / 5 V	5	Up
4	V	6	R1 (ref +)	6	-	6	GND	6	GND/0V
3	W	7	R2 (ref -)	7	GND	7	Daten +	7	Data +
Erdung	PE	8	-	8	-	8	Daten -	8	Data -
1) Falls vor		9	-	9	US	9	CLK +	9	Clock +
	+ bei HEM1-001 - bei HEM1-001	10	-	10	Daten +	10	CLK -	10	Clock -
		11	ÜHS + / Temp +	11	Daten -	11	ÜHS + / Temp +	11	ÜHS +
		12	ÜHS - / Temp -	12	-	12	ÜHS - / Temp -	12	ÜHS -
				13	-	13	_ 2)	13	-
				14	ÜHS + / Temp +	14	_ 3)	14	-
				15	ÜHS - / Temp -	15	-	15	-
				16	-	16	-	16	-
				17		17	_	17	

Motorstecker

8-polig 4 x Ø 2 mm (3+PE) + 4 x Ø 1 mm

12-polig 12 x Ø 1 mm, 0° codiert


17-polig 17 x Ø 1 mm, 0° codiert


17-polig 17 x Ø 1 mm, 0° codiert

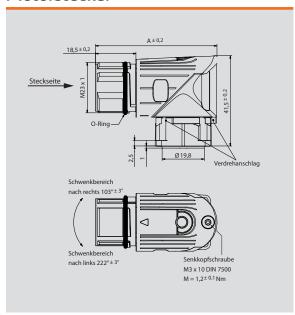

17-polig 17 x Ø 1 mm, 0° codiert

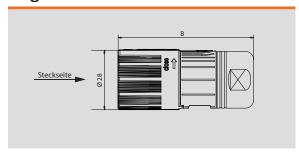
ASTA 014 NN00 41 0100 000 (Kabelklemmber. 6-10 mm)



ASTA 014 NN00 41 0100 000 (Kabelklemmber. 6-10 mm)

Signal Inkrementel


Pin	Funktion
1	Z
2	Z Z
3	А
4	Ā
5	В
6	B
7	U (R)
8	Ū (R)
9	V (S)
10	∇ (S)
11	W (T)
12	$\overline{\mathbb{V}}(\overline{\mathbb{T}})$
13	V _{cc} / 5 V
14	GND
15	ÜHS +
16	ÜHS -
17	-



Motorstecker

Steckertyp	Α	В
Signal	55,6	59
Leistung	55,3	78

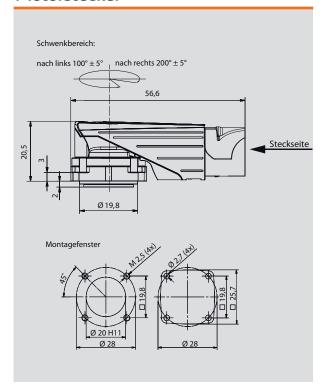
Optionen Stecker für Einkabellösung

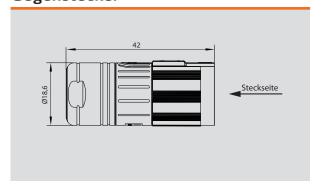
I-Tec-Stecker

Leistung / Signal

Pin	Funktion
А	U
В	V
С	W
Erdung	PE
1	U _s (DSL +)
2	GND (DSL -)
3	Bremse + *
4	Bremse - *
5	-

Motorstecker




Gegenstecker

^{*} Falls vorhanden

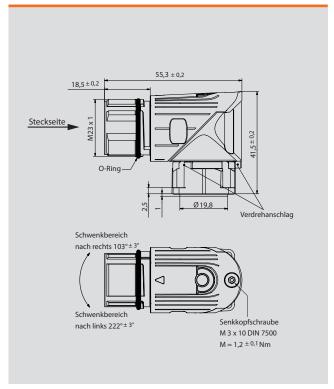
Motorstecker

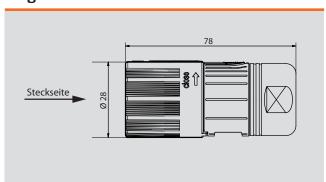
M23-Stecker

Leistung / Signal

Pin	Funktion
А	Bremse + *
В	Bremse - *
С	U _s (DSL+)
D	GND (DSL-)
1	U
4	V
3	W
Erdung	PE

Motorstecker




Gegenstecker

^{*} Falls vorhanden

Motorstecker

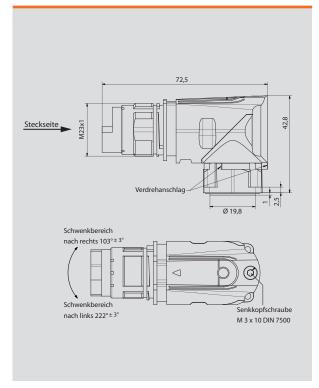
Optionen Stecker für Einkabellösung

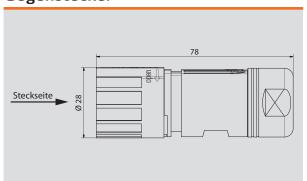
M23 H-Tec (Hybrid) Stecker

Leistung / Signal

Pin	Funktion
А	U
В	V
С	W
D	-
Erdung	PE
7	Bremse + *
8	Bremse - *
Н	U _S (DSL +)
L	GND (DSL -)

Motorstecker




Gegenstecker

^{*} Falls vorhanden

Motorstecker

Reglerprogramm

HCD-Servoregler - AC 230 V

Seite 48

Der Servoregler HCD ist speziell für die Versorgung mit einphasiger Netzeinspeisung konzipiert. Die Ansteuerung erfolgt wahlweise über Digital- und Analogeingänge, PLC Motion oder über den Feldbus CANopen.

HCB-Servoregler - Der Kompakte

Seite 50

Die kompakten Einachsservoregler der HCB Baureihe sind wahre Allrounder der Antriebstechnik. Sie vereinen höchste Leistungsdichte mit umfangreichen Motion Control Funktionen.

HCF-Servoregler - DC 24 / 48 V

Seite 54

Der Servoregler HCF ist speziell für die Versorgung direkt aus einem 24 / 48 V-Netz konzipiert. Das ermöglicht eine äußerst kompakte und kostenoptimierte Bauform, die sich auf die wesentlichen Elemente der Antriebseinheit beschränkt.

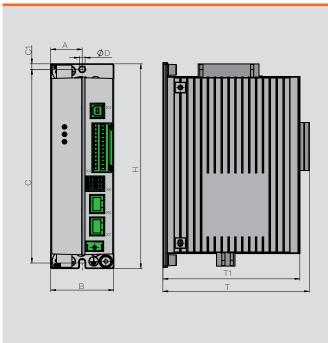
HCJ-Servoregler - Der Alleskönner

Seite 56

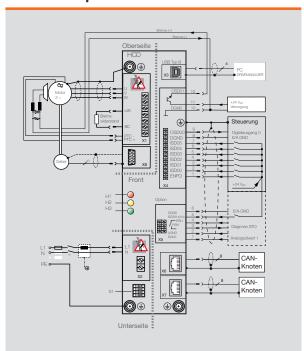
Die modularen Einachsservoregler der Baureihe HCJ vereinen hohes Leistungsvolumen und umfangreiche Motion Control Funktionen in vier kompakten Baugrößen. Die hohe Varianz der Feldbusanbindung und der Geberschnittstellen ermöglicht eine schnelle Integration in bestehende Industrieanlagen, als auch eine solide und zukunftssichere Basis für neue Anlagen und Projekte.

HCD-Servoregler 230 V_{AC}

Technische Daten Servoregler


Тур	Versorgungs- spannung	$\mathbf{U}_{z \kappa}$	Phasen- spannung	Phasen- nennstrom	Maximaler Phasen- strom	Nenn- leistung	Bestellschlüssel
	[V _{AC}]	[V]	[V _{eff}]	[A _{eff}]	[A _{eff}]	[W]	
HCD	1×230	320	3×0-230	4	8	800	HCD2-004-0011-00

Schaltfrequenz [kHz]: 4, 8, 12, 16 (Werkseinstellung 8 kHz)


Geräteanschlussleistung [kVA]: 1,84 Leitungsquerschnitt [mm 2]: 0,2...1,5 Netzfrequenz [Hz]: 50 / 60 \pm 10 %

Der kleine 4-Q-Servoregler wurde speziell für kostensensitive, einfache Steuerungsaufgaben wie z. B. Drehzahl-, Drehmoment- und positionsgeregelte Anwendungen entwickelt. Seine Steuerung erfolgt wahlweise mit Digital- und Analogeingängen, PLC Motion oder über Feldbus (CANopen). Die Ausgangsleistung des Reglers liegt je nach Motor bei bis zu 800 W im S1-Betrieb. Dazu passend können unsere speziell entwickelten HES/HEM-Gebersysteme zum Einsatz kommen.

Maßzeichnung

Anschlussplan

Anschlüsse / Ein- und Ausgänge

Bezeichnung Anschluss

Funktion

H1, H2, H3	Leuchtdioden (integriert)	Gerätezustandsanzeige
S1	DIP-Schaltung	Einstellen der CAN-Adresse
X2	Steckklemme (2-polig)	Einphasige Netzeinspeisung
PE	PE-Anschlussbolzen	Schutzerdung
X4	Steckklemme (12-polig)	6 digitale Eingänge 1 digitaler Ausgang Schnittstelle für Motorbremse
X1	Steckklemme (7-polig)	Motorphasen (U/V/W) Bremswiderstand (+ZK, BC) Temperaturüberwachung (PTC+, PTC-)
X3	USB-Buchse (Typ-B)	Anschluss für PC mit DriveManager
X6 / X7	2x RJ45 Buchse	CANopen-Schnittstelle
X8	D-Sub Buchse (15-polig)	Schnittstelle für Drehgeber
X5 (opt.)	Steckklemme (6-polig)	Anschlüsse für STO-Funktionalität (ISDSH, RSH)
X5 (opt.)	Steckklemme (6-polig)	Analogeingang (ISA00), Auflösung 10-Bit ADC

Umgebungsbedingungen

Luftfeuchte im Betrieb: relative Luftfeuchte 5 - 85 % ohne Kondensation

Umgebungstemperatur im Betrieb: + 5 °C ... - + 40 °C

Luftfeuchte im Lager: relative Luftfeuchte 5 - 95 %

Lagertemperatur: - 25 °C ... + 55 °C

Schutzart: IP00

Aufstellhöhe: 1.000 Meter ü.NN., bis 2.000 Meter ü.NN. mit Leistungsreduzierung

Unterstützte Gebersysteme

SSI, TTL

Schnittstelle

CANopen (CiA 402)

Funktionen

- PLC Motion

- Integrierter Netzfilter

- Drehzahlregler

- Integrierter Bremschopper

- Drehmomentregler

- UL-Approbation*: Zertifiziert gemäß UL 508c

- Positionieren

- Sicherheitsfunktion STO

- Rampengenerator

^{*} Gültig, solange die vorgeschriebenen Betriebsbedingungen eingehalten werden.

HCB-Servoregler

Allgemeines

Die kompakten Einachsservoregler der HCB Baureihe sind wahre Allrounder der Antriebstechnik. Sie vereinen höchste Leistungsdichte mit umfangreichen Motion Control Funktionen.

Die HCB Baureihe besteht aus zwei Baugrößen, die sich bei den 1-Phasengeräten in zwei Leistungsstufen und bei den 3-Phasengeräten in drei Leistungsstufen untergliedern. Alle bewährten Feldbusschnittstellen sind "on Board" - von CANopen über EtherCAT bis PROFINET, welche reibungslose Kommunikation versprechen und den HCB Servoregler technologisch auszeichnen. Seine Vielseitigkeit wird mit den umfangreichen Geberschnittstellen auch für Einkabellösungen nochmals unterstrichen. Komplexe Positionieraufgaben durch verkettete Positionssätze lassen sich miteinander verbinden. Die lage- oder drehzahlsynchrone Bewegung mehrerer Antriebe mit variablem Getriebeverhältnis ist per Software-Assistent schnell parametriert und einsatzbereit. Rundtischanwendungen, Lagetrigger, Rotorpositionstrigger oder Schaltnocken - eine Vielzahl dynamischer Anwendungsaufgaben lassen sich über die integrierten Softwarefunktionen bewältigen.

In Kombination mit den HeiMotion Servomotoren mit genau abgestimmter Gebervariante und einem im Getriebedirektanbau montierten Getriebe aus der HMPG-Baureihe erhalten Sie eine maßgeschneiderte Antriebsachse aus einer Hand zu einem unschlagbaren Preis-Leistungsverhältnis.

Anschlüsse / Ein- und Ausgänge

Anschluss Bezeichnung X1 I/O-Kommunikation X2A Resolver / Analoge Hallgeber X2B Multi-Encoder ХЗ STO-Schnittstelle (STOA, STOB), Endschalter (DIN6, DIN7) Dig. Ausgang (DOUT0) X4 CANopen-Schnittstelle X5 RS232/RS485 / Serielle Schnittstelle Anschluss für Motor X6 X6A Motorbremse / HIPERFACE DSL® (BL 4300-C) X9 Versorgungsspannung Bremswiderstand X9A 24V-Versorgung X9B X18 Ethernet-Schnittstelle X19 USB-Schnittstelle X21 Realtime-Ethernet-Schnittstelle

Technische Daten HCB

	1-Ph	asig	3-Phasig		
	HCB 2/6-1	HCB 4/12-1	HCB 4/12-3	HCB 8/24-3	HCB 12/30-3
Versorgungsspannung	230 V _{AC} [± 10	%], 5060 Hz	3 x 230	480 V _{AC} [± 10 %], 4	1566 Hz
Steuerspannung	24 V _{DC} [± 20) %] (0,35 A)	24 V _{DC} [± 20 %] (0,35 A)	24 V _{DC} [± 20 %] (0,45 A)	24 V _{DC} [± 20 %] (0,65 A)
Zwischenkreisspannung	325 V _{DC} (bei U	$J_{Netz} = 230 V_{AC}$	565	V_{DC} (bei $U_{Netz} = 400$) V _{AC})
Nennausgangsleistung	400 W	800 W	1,6 kW	3,2 kW	4,8 kW
Max. Ausgangsleistung für 2 s	1 kW	2 kW	4,8 kW	9,6 kW	12 kW
Nennausgangsstrom	2 A _{eff}	4 A _{eff}	4 A _{eff}	8 A _{eff}	12 A _{eff}
Max. Ausgangsstrom für 2 s	6 A _{eff}	12 A _{eff}	12 A _{eff}	24 A _{eff}	30 A _{eff}
Interner Bremswiderstand	75	5 Ω	30 Ω		
Brems- / Impulsleistung	bis 2	2 kW	bis 24 kW		
Externer Bremswiderstand	75 Ω, m	ax. 2 kW		≥ 30 Ω	
Haltebremse	24 V _{DC} , I	max. 2 A		24 VDC, max. 2A	
Abmessungen Servoregler H x B x T	245 x 50 x 163 r	x 163 mm mm mit Montage- atte	230 x 67 x 200 mm 275 x 67 x 200 mm mit Montageplatte		
Gewicht	1,5	i kg	2,9 kg		
Geberauswertung	EnDat 2.2, HIPERFACE®, HIPER-FACE DSL®, Resolver, analoge und digitale Inkrementalgeber mit / ohne Kommutierungssignale, BISS (Typ C)		EnDat 2.2, HIPERFACE®, HIPERFACE DSL®, Resolver, analoge und digitale Inkrementalgeber mit / ohne Kommutierungssignale, BISS (Typ C)		
Schnittstellen	USB 2.0, Ethernet, CAN-Bus, EtherCAT, PROFINET, MicroSD-Karte		USB 2.0, Ethernet, CAN-Bus, EtherCAT, PROFINET, MicroSD-Karte		
Ein- / Ausgänge	8 x digital in (24 VDC), 2 x analog in (± 10 V) 3 x digital out (24 VDC)		8 x digital in (24 VDC), 2 x analog in (± 10 V) 3 x digital out (24 VDC)		
Erzeugnisnummern	12-225-020-01-0	12-225-020-02-0	12-405-020-11-0	12-405-020-12-0	12-405-020-13-0

HCB-Servoregler

Umgebungsbedingungen

Umgebungstemperatur im Betrieb: 0 °C bis +40 °C

+40 °C bis +50 °C mit

Leistungsreduzierung 2,5 %/K

Lagertemperatur: -25 °C bis +70 °C

Luftfeuchte im Lager und Betrieb: Rel. Luftfeuchte bis 90 %, nicht betauend

Schutzart: IP20

Aufstellhöhe: Montagehöhe max. 2000 m über NN, oberhalb 1000 m über NN

mit Leistungsreduzierung 1 % pro 100 m

Funktionen*

- Sicherheitsfunktion "Safe Torque-Off (STO)
- Realisierung der Funktionalität SS1 möglich
- Schaltende Nocken
- Safe Brake Control (SBC) wenn konfiguriert
- Direkte Ansteuerung der Haltebremse im Motor
- Automatische Ermittlung der Motorparameter
- Flying Saw
- Bahnprogramm / Verkettung
- Integrierte Positionssteuerung
- Parametrierbare Bandsperren

Leistungskabel

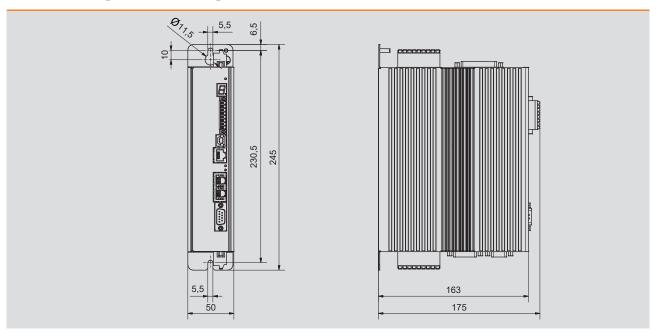
Länge	Heidrive-Nr.
3 m	14-007-051-18-0
5 m	14-007-051-19-0
10 m	14-007-051-23-0

Signalkabel (Resolver)

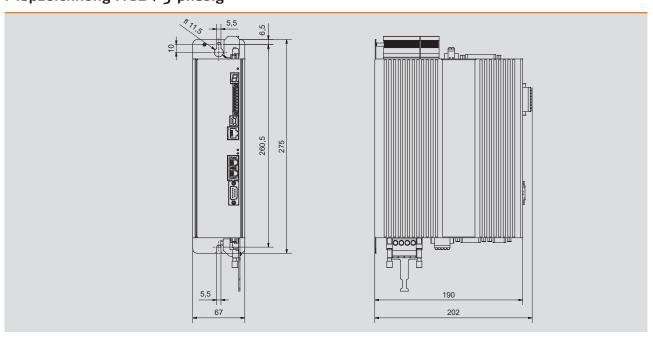
Länge	Heidrive-Nr.
3 m	14-007-051-60-0
5 m	14-007-051-62-0
10 m	14-007-051-67-0

Signalkabel (HIPERFACE)

Lange	Heldrive-Ivr.
3 m	14-007-051-78-0
5 m	14-007-051-80-0
10 m	14-007-051-85-0


Steckersätze

1-phasig	3-phasig
14-001-015-22-0	14-001-015-35-0


^{*} Einige Funktionen sind nicht für alle Modelle verfügbar

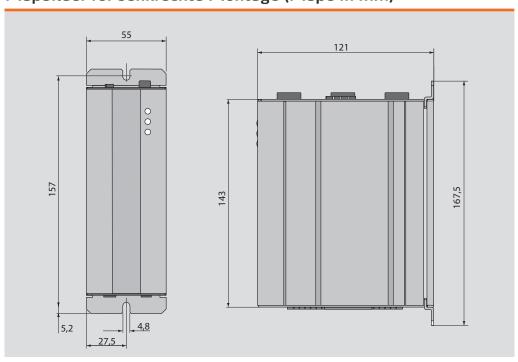
Maβzeichnung HCB / 1-phasig

Maβzeichnung HCB / 3-phasig

HCF-Servoregler 24 bis 48 V_{DC}

Technische Daten Servoregler

Т	ӯр	Versorgungs- spannung	$\mathbf{U}_{z\kappa}$	Phasen- spannung	Phasen- nennstrom	Maximaler Phasen- strom	Nenn- leistung	Bestellschlüssel
		[V _{DC}]	[V _{DC}]	$[V_{\text{eff}}]$	[A _{eff}]	[A _{eff}]	[W]	
Н	ICF	24 - 48	24 - 48	3x0-33	8	16	240	HCF0-008-1x.x0


Schaltfrequenz [kHz]: 8, 16 (Werkseinstellung 8 kHz)

Geräteanschlussleistung [kVA] 0,55 Leitungsquerschnitt [mm²] 1,5...2,5

Logikversorgung [V_{DC}]: 24

Der Regler HCF bietet Ihnen ein kostenoptimiertes DC-Speisungskonzept mit 24 V oder 48 V für den Einsatz in der anspruchsvollen Automatisierungswelt. So verfügt der HCF über Positionierfunktionalität auf hohem Niveau, ein robustes Mechanikkonzept, CANopen CiA 402 Unterstützung, sicheren Halt gemäß EN 954-1 Kategorie 3 uvm.

Maßbilder für senkrechte Montage (Maße in mm)

Anschlüsse / Ein- und Ausgänge

Bezeichnung Anschluss Funktion

X1	Steckklemme (6-polig)	DC-Einspeisung (L+ / L-) Bremswiderstand (L+ / RB)
X2	Steckklemme (2 x 10-polig)	Sicherer Halt mit Relaisausgang 8 digitale Eingänge 2 analoge Eingänge 10-Bit ADC 3 digitale Ausgänge 1 Relaisausgang (24 V / 1 A) Logikversorgung
X3	Steckklemme (4-polig)	Motorphasen (U/V/W/PE)
X4	D-Sub Buchse (9-polig)	RS232-Schnittstelle
X5	D-Sub Einbaustecker (9-polig)	CANopen-Schnittstelle
X6	D-Sub Buchse (15-polig)	Schnittstelle für Drehgeber Temperaturüberwachung (PTC / KTY / Klixon)
S1	Drehcodeschalter	Einstellen der CANopen-Adresse

Umgebungsbedingungen

Umgebungstemperatur im Betrieb: $-10 \, ^{\circ}\text{C} \dots + 40 \, ^{\circ}\text{C}$ Lagertemperatur: $-25 \, ^{\circ}\text{C} \dots + 55 \, ^{\circ}\text{C}$

Luftfeuchte im Lager und Betrieb: 15 ... 85 % relative Luftfeuchte (ohne Kondensation)

Schutzart: IP20

Aufstellhöhe: bis 1.000 Meter

Unterstützte Gebersysteme

Resolver, Inkrementalgeber, SSI-Absolutwertgeber

Schnittstelle

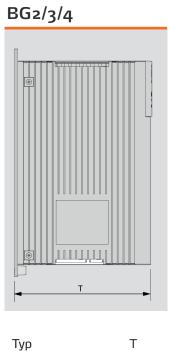
CANopen (CiA 402), RS232

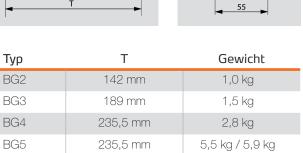
Funktionen

- Bremsentreiber - Integrierter Bremswiderstand

PLC Motion
 - Elektronisches Nockenschaltwerk
 - DriveManager-Software
 - Verkettetes Fahrsatzpositionieren

- Online-Lageprofilgenerator - Sicherer Halt gemäß EN 954-1 Kategorie 3

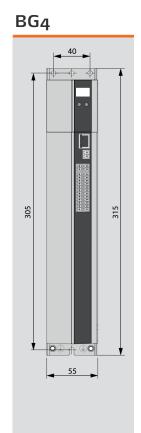

HCJ-Servoregler 230 / 400 V_{AC}

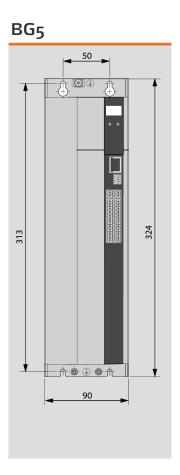


Technische Daten Servoregler

Тур	U _{zk}	Versorgungs- spannung			Baugröβe
	[V]	[V]	[A _{eff}]	[A _{eff}]	
HCJ22.003	325	1/3×230	3	9	BG2
HCJ24.002	560	3 x 400	2	6	BG2
HCJ22.006	325	1 / 3 x 230	5,9	17,7	BG3
HCJ24.004	560	3 x 400	3,5	10,5	BG3
HCJ22.008	325	1/3×230	8	24	BG4
HCJ24.007	560	3 x 400	6,5	19,5	BG4
HCJ24.012	560	3 x 400	12	36	BG5
HCJ24.016	560	3 x 400	16	48	BG5

Netzfrequenz [Hz] $50/60 \pm 10\%$





BG2/3

225

235

Anschlüsse / Ein- und Ausgänge

Bezeichnung	Anschluss	Funktion	
X1	Steckklemme (7-polig)	Motorphasen (U/V/W/PE) DC-Einspeisung (L+/L-) Bremswiderstand (L+/RB)	
X2	Steckklemme (2-polig)	Logikversorgung + 24 V _{DC}	
X3	Steckklemme (4-polig)	Netzeinspeisung (L1/L2/L3/PE)	
X4	Steckklemme (2 x 12-polig)	7 digitale Eingänge 2 analoge Eingänge (10-Bit ADC) 3 digitale Ausgänge 1 Relaisausgang (24 V / 1 A) Diagnose STO	
X5	Steckklemme (2-polig)	Temperaturüberwachung (PTC / KTY / Klixon)	
X6	D-Sub Buchse (9-polig)	Schnittstelle für Resolver	
X7	D-Sub Buchse (15-polig)	Schnittstelle für Drehgeber (TTL / SSI / HIPERFACE/ ENDAT)	
X9	RJ-45 Buchse	Ethernet-Schnittstelle	
X13	Steckklemme (4-polig)	Schnittstelle für Motorbremse	
Option 1	Buchse (abhängig von Modul)	Feldbus-Schnittstelle z.B. CANopen, EtherCAT, SERCOS,	
Option 2	Buchse (abhängig von Modul)	Geber-Schnittstelle z.B. zweiten (sicheren) Geber, Encoder-Simulation, TwinSync, Achsüberwachung,	

Umgebungsbedingungen

Umgebungstemperatur im Betrieb: $-10 \,^{\circ}\text{C} \dots + 40 \,^{\circ}\text{C}$ Lagertemperatur: $-25 \,^{\circ}\text{C} \dots + 55 \,^{\circ}\text{C}$

Luftfeuchte im Lager und Betrieb: < 85 % relative Luftfeuchte (ohne Kondensation)

Schutzart: IP20 mit Ausnahme der Klemmen (IP00)

Aufstellhöhe: bis 1.000 Meter

Unterstützte Gebersysteme

Resolver, HIPERFACE®-Geber, HIPERFACE DSL®-Geber, Inkrementalgeber, SSI-Absolutwertgeber, EnDat 2.2 Geber

Schnittstelle

CANopen (CiA 402), Ethernet (Parametrierung über DriveManager)

Optional: EtherCAT, SERCOS III, Profibus DP oder Profinet IRT

Funktionen

- PLC Motion - Integrierter Bremswiderstand (BG 3+4)

- Bremsentreiber - Sicherer Halt nach EN 954-1, Kategorie 3

- Verkettetes Fahrsatzpositionieren - Funkentstörfilter bis 7,5 kW

- Online-Lageprofilgenerator - Elektronisches Nockenschaltwerk

- DriveManager-Software

Notizen

Technische Änderungen vorbehalten! Stand 11/2023

Heidrive GmbH

Starenstraße 23 93309 Kelheim

Tel. 09441/707-0 Fax 09441/707-259

info@heidrive.de www.heidrive.com